【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.12 连续数组:为什么contiguous这么重要?

news2025/2/3 13:50:02

在这里插入图片描述

2.12 连续数组:为什么contiguous这么重要?

目录
《连续数组:为什么contiguous这么重要?》
2.12.1 C顺序与Fortran顺序对比
2.12.2 跨步数组重排
2.12.3 BLAS库兼容性
2.12.4 转置操作性能对比
2.12.5 总结
2.12.6 参考文献

2.12.1 C顺序与Fortran顺序对比

NumPy 的 ndarray 支持两种主要的内存顺序:C 顺序(行优先)和 Fortran 顺序(列优先)。了解这两种顺序的差异和影响对于优化内存访问至关重要。

  • C 顺序的基本原理:行优先存储。
  • Fortran 顺序的基本原理:列优先存储。
  • 选择合适的顺序:在不同场景下选择合适的内存顺序。
内存顺序对比
C 顺序
Fortran 顺序
行优先存储
列优先存储
选择合适的顺序
矩阵乘法
数组切片
import numpy as np

# 创建一个 C 顺序的数组
a_c = np.array([[1, 2, 3], [4, 5, 6]], order='C')
print(f"C 顺序数组 a_c: \n{a_c}")
print(f"a_c 的步长: {a_c.strides}")  # 输出步长

# 创建一个 Fortran 顺序的数组
a_f = np.array([[1, 2, 3], [4, 5, 6]], order='F')
print(f"Fortran 顺序数组 a_f: \n{a_f}")
print(f"a_f 的步长: {a_f.strides}")  # 输出步长

2.12.2 跨步数组重排

跨步(strides)是 ndarray 中非常重要的概念,通过调整步长可以实现数组的重排,而不需要创建新的数据副本。合理的跨步设置可以显著提高性能。

  • 跨步的基本概念:步长的定义和作用。
  • 跨步重排的方法:如何通过调整步长实现数组重排。
  • 跨步重排的性能优势:避免数据复制,提高访问效率。
通过 reshape 方法调整步长
ndarray
+int nd: 维度数
+npy_intp* dimensions: 形状数组
+npy_intp* strides: 步长数组
+void* data: 数据指针
+PyDataTypeObject* dtype: 数据类型
+PyObject* base: 基数组
+int flags: 标志位
reshape
+ndarray* _array: 原始数组
+npy_intp* _new_strides: 新的步长数组
+int _new_flags: 新的标志位
import numpy as np

# 创建一个 3x3 的数组
a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 通过重塑实现跨步重排
b = a.reshape(9)  # 将 3x3 的数组重塑为 1x9 的数组
print(f"重塑后的数组 b: \n{b}")
print(f"b 的步长: {b.strides}")  # 输出步长

# 通过转置实现跨步重排
c = a.T  # 转置数组
print(f"转置后的数组 c: \n{c}")
print(f"c 的步长: {c.strides}")  # 输出步长

2.12.3 BLAS库兼容性

BLAS(Basic Linear Algebra Subprograms)库是许多数值计算库的核心,NumPy 也依赖于 BLAS 库来实现高效的矩阵运算。了解 ndarray 的连续性对 BLAS 库的兼容性影响可以优化计算性能。

  • BLAS库的基本原理:BLAS 库的介绍和作用。
  • 连续性对 BLAS 的影响:非连续数组对 BLAS 库性能的影响。
  • 优化 BLAS 兼容性:如何确保数组的连续性以优化 BLAS 性能。
BLAS库兼容性
BLAS库的基本原理
矩阵运算优化
线性代数操作
连续性对 BLAS 的影响
性能下降
数据复制
优化 BLAS 兼容性
使用 np.ascontiguousarray
转置数组
import numpy as np
import time

# 创建一个大数组
a = np.random.rand(1000, 1000)

# 非连续数组
b = a[::2, ::2]  # 非连续数组

# 连续数组
c = np.ascontiguousarray(b)  # 转换为连续数组

# 计算矩阵乘法
start_time = time.time()
result_b = np.dot(b, b.T)  # 非连续数组的矩阵乘法
non_contiguous_time = time.time() - start_time
print(f"非连续数组矩阵乘法用时: {non_contiguous_time:.2f}秒")

start_time = time.time()
result_c = np.dot(c, c.T)  # 连续数组的矩阵乘法
contiguous_time = time.time() - start_time
print(f"连续数组矩阵乘法用时: {contiguous_time:.2f}秒")

# 比较性能
speedup = non_contiguous_time / contiguous_time
print(f"连续数组矩阵乘法性能提升: {speedup:.2f}倍")

2.12.4 转置操作性能对比

转置操作在数组处理中非常常见,但不同的数组顺序(如 C 顺序和 Fortran 顺序)会影响转置的性能。了解转置操作的性能差异可以优化代码。

  • 转置的基本原理:转置操作的定义和作用。
  • C 顺序和 Fortran 顺序的转置性能:比较两种顺序的转置性能。
  • 优化转置操作:如何优化转置操作以提高性能。
转置操作性能对比
转置的基本原理
改变数组顺序
C 顺序的转置性能
数据复制
步长调整
Fortran 顺序的转置性能
数据不复制
步长调整
优化转置操作
使用 np.asfortranarray
使用 np.ascontiguousarray
import numpy as np
import time

# 创建一个 C 顺序的数组
a_c = np.random.rand(1000, 1000)

# 创建一个 Fortran 顺序的数组
a_f = np.asfortranarray(a_c)

# 计算 C 顺序数组的转置
start_time = time.time()
b_c = a_c.T  # 转置操作
c contiguous_time = time.time() - start_time
print(f"C 顺序数组转置用时: {c_contiguous_time:.2f}秒")
print(f"b_c 的步长: {b_c.strides}")  # 输出步长

# 计算 Fortran 顺序数组的转置
start_time = time.time()
b_f = a_f.T  # 转置操作
f_contiguous_time = time.time() - start_time
print(f"Fortran 顺序数组转置用时: {f_contiguous_time:.2f}秒")
print(f"b_f 的步长: {b_f.strides}")  # 输出步长

# 比较性能
speedup = c_contiguous_time / f_contiguous_time
print(f"Fortran 顺序数组转置性能提升: {speedup:.2f}倍")

2.12.5 总结

  • 关键收获:理解 C 顺序和 Fortran 顺序的差异,掌握跨步数组重排的方法,了解 BLAS 库兼容性的重要性,优化转置操作的性能。
  • 最佳实践:合理选择内存顺序,优化数组的跨步设置,确保数组的连续性以提高计算性能,使用 np.ascontiguousarraynp.asfortranarray 进行内存优化。
  • 实用技巧:通过实时监控内存占用和性能测试,找到最优的内存布局策略。

通过本文,我们深入探讨了 NumPy 中连续数组的重要性,包括 C 顺序和 Fortran 顺序的对比,跨步数组的重排技巧,BLAS 库的兼容性问题,以及转置操作的性能优化。希望这些内容能帮助你在实际开发中更好地优化内存使用,提高代码性能,避免常见的内存陷阱。

2.12.6 参考文献

参考资料链接
《NumPy Beginner’s Guide》NumPy Beginner’s Guide
《Python for Data Analysis》Python for Data Analysis
NumPy 官方文档NumPy Reference
Dask 官方文档Dask Documentation
Stack OverflowDifference between C and Fortran order in NumPy
MediumUnderstanding NumPy’s Memory Layout
Python Memory ManagementPython Memory Management
SciPy 官方文档SciPy Memory Efficiency
WikipediaBLAS (Basic Linear Algebra Subprograms)
《高性能Python》High Performance Python
《Python数据科学手册》Python Data Science Handbook
Intel MKLIntel Math Kernel Library (MKL)
OpenBLASOpenBLAS Documentation

这篇文章包含了详细的原理介绍、代码示例、源码注释以及案例等。希望这对您有帮助。如果有任何问题请随私信或评论告诉我。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2291292.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

O3 模型正式上线,能否与 DeepSeek 一较高下?

OpenAI 最近推出了 GPT O3 模型,并对 ChatGPT Plus 用户的 O3-mini 版本进行了升级,提升了每日消息限额,从 50 条增加至 150 条。这一调整大大提升了用户体验,让更多用户有机会深入体验 O3 模型的能力。那么,O3 模型的…

计算机网络 应用层 笔记1(C/S模型,P2P模型,FTP协议)

应用层概述: 功能: 常见协议 应用层与其他层的关系 网络应用模型 C/S模型: 优点 缺点 P2P模型: 优点 缺点 DNS系统: 基本功能 系统架构 域名空间: DNS 服务器 根服务器: 顶级域…

MATLAB的数据类型和各类数据类型转化示例

一、MATLAB的数据类型 在MATLAB中 ,数据类型是非常重要的概念,因为它们决定了如何存储和操作数据。MATLAB支持数值型、字符型、字符串型、逻辑型、结构体、单元数组、数组和矩阵等多种数据类型。MATLAB 是一种动态类型语言,这意味着变量的数…

[SAP ABAP] SE11 / SE16N 修改标准表(慎用)

1.SE16N修改标准表 使用事务码ME16N进入到查询页面,填入要修改的标准表MARA,在事务码输入框中填入/H,回车之后点击按钮,进入Debug调试界面 把GD-SAPEDIT 与 GD-EDIT 的值更改为X然后点击按钮(快捷键按F8)进行下一步操作 可以在此…

Arduino大师练成手册 -- 控制 AS608 指纹识别模块

要在 Arduino 上控制 AS608 指纹识别模块,你可以按照以下步骤进行: 硬件连接 连接指纹模块:将 AS608 指纹模块与 Arduino 连接。通常,AS608 使用 UART 接口进行通信。你需要将 AS608 的 TX、RX、VCC 和 GND 引脚分别连接到 Ardu…

maven mysql jdk nvm node npm 环境安装

安装JDK 1.8 11 环境 maven环境安装 打开网站 下载 下载zip格式 解压 自己创建一个maven库 以后在idea 使用maven时候重新设置一下 这三个地方分别设置 这时候maven才算设置好 nvm 管理 npm nodejs nvm下载 安装 Releases coreybutler/nvm-windows GitHub 一键安装且若有…

Java实现LFU缓存策略实战

LFU算法原理在Java中示例实现集成Caffeine的W-TinyLFU策略缓存实战总结LFU与LRU稍有不同,LFU是根据数据被访问的频率来决定去留。尽管它考虑了数据的近期使用,但它不会区分数据的首次访问和后续访问,淘汰那些访问次数最少的数据。 这种缓存策略主要用来处理以下场景: 数据…

安卓(android)饭堂广播【Android移动开发基础案例教程(第2版)黑马程序员】

一、实验目的(如果代码有错漏,可查看源码) 1.熟悉广播机制的实现流程。 2.掌握广播接收者的创建方式。 3.掌握广播的类型以及自定义官博的创建。 二、实验条件 熟悉广播机制、广播接收者的概念、广播接收者的创建方式、自定广播实现方式以及有…

基于改进的强跟踪技术的扩展Consider Kalman滤波算法在无人机导航系统中的应用研究

在无人机组合导航系统中,精确的状态估计对于任务的成功执行至关重要。然而,系统面临的非线性特性和不确定性,如传感器的量测偏差和动态环境变化,常常导致传统Kalman滤波算法失效。因此,提出一种鲁棒且有效的滤波算法&a…

1.初识beamer

系列文章目录 初识beamer 文章目录 系列文章目录前言一、什么是beamer1.1 定义和背景1.2 使用场景1.3 Beamer优势 二、overleaf 入门beamer三、开始使用beamer3.1 新建一个beamer文件3.2 创建beamer页/帧3.3 目录页3.4 配置beamer整体风格 结束语 前言 工欲善其事&#xff0c…

DeepSeek R1本地化部署 Ollama + Chatbox 打造最强 AI 工具

🌈 个人主页:Zfox_ 🔥 系列专栏:Linux 目录 一:🔥 Ollama 🦋 下载 Ollama🦋 选择模型🦋 运行模型🦋 使用 && 测试 二:🔥 Chat…

《基于Scapy的综合性网络扫描与通信工具集解析》

在网络管理和安全评估中,网络扫描和通信是两个至关重要的环节。Python 的 Scapy 库因其强大的网络数据包处理能力,成为开发和实现这些功能的理想工具。本文将介绍一个基于 Scapy 编写的 Python 脚本,该脚本集成了 ARP 扫描、端口扫描以及 TCP…

基于Python的药物相互作用预测模型AI构建与优化(上.文字部分)

一、引言 1.1 研究背景与意义 在临床用药过程中,药物相互作用(Drug - Drug Interaction, DDI)是一个不可忽视的重要问题。当患者同时服用两种或两种以上药物时,药物之间可能会发生相互作用,从而改变药物的疗效、增加不良反应的发生风险,甚至危及患者的生命安全。例如,…

Linux环境下的Java项目部署技巧:环境安装

安装 JDK: 第上传 jdk 压缩安装包到服务器 将压缩安装包解压缩: tar -xvf jdk-8uXXX-linux-x64.tar.gz 配置环境变量: 编辑 /etc/profile 文件,在文件末尾添加以下内容: export JAVA_HOME/path/to/jdk //JAVA_HOME…

【系统迁移】将系统迁移到新硬盘中(G15 5520)

文章目录 前言问题描述解决步骤(红色为 debug 步骤)参考文献 前言 参数: 电脑 dell g15 5520硬盘:1T 自带硬盘 海力士 2230 -> 2T 西数蓝盘 2280 问题描述 电脑硬盘过小(且只有一个接口),将…

小智 AI 聊天机器人

小智 AI 聊天机器人 (XiaoZhi AI Chatbot) 👉参考源项目复现 👉 ESP32SenseVoiceQwen72B打造你的AI聊天伴侣!【bilibili】 👉 手工打造你的 AI 女友,新手入门教程【bilibili】 项目目的 本…

MySql运维篇---008:日志:错误日志、二进制日志、查询日志、慢查询日志,主从复制:概述 虚拟机更改ip注意事项

#先登录mysql mysql -uroot -p1234#通过此系统变量,查看当前mysql的版本中默认的日志格式是哪个 show variables like %binlog\_format%;1.2.3 查看 由于日志是以二进制方式存储的,不能直接读取,需要通过二进制日志查询工具 mysqlbinlog 来查…

理解DeepSeek源代码之如何安装triton包

DeepSeek选择了开源路线,在github上可以下载到所有的源代码还有参数(数据集应该没有开源),大语言模型的源代码规模其实非常小,DeepSeek V3的模型函数不过804行,阅读源代码有助于更好理解大语言模型。 1. D…

C++ Primer 标准库类型string

欢迎阅读我的 【CPrimer】专栏 专栏简介:本专栏主要面向C初学者,解释C的一些基本概念和基础语言特性,涉及C标准库的用法,面向对象特性,泛型特性高级用法。通过使用标准库中定义的抽象设施,使你更加适应高级…

为AI聊天工具添加一个知识系统 之83 详细设计之24 度量空间之1 因果关系和过程:认知金字塔

本文要点 度量空间 在本项目(为AI聊天工具添加一个知识系统 )中 是出于对“用”的考量 来考虑的。这包括: 相对-位置 力用(“相”)。正如 法力,相关-速度 体用 (“体”)。例如 重…