AI常见的算法

news2025/1/31 5:33:15

人工智能(AI)中常见的算法分为多个领域,如机器学习、深度学习、强化学习、自然语言处理和计算机视觉等。以下是一些常见的算法及其用途:

例子代码:纠结哥/pytorch_learn


1. 机器学习 (Machine Learning)

监督学习 (Supervised Learning)
  • 线性回归 (Linear Regression):用于预测连续值,如房价预测。
  • 逻辑回归 (Logistic Regression):用于分类问题,如垃圾邮件检测。
  • 支持向量机 (SVM):用于分类和回归,如文本分类。
  • k近邻 (k-Nearest Neighbors, k-NN):基于最近邻数据进行分类或回归。
  • 决策树 (Decision Tree):树形结构的分类与回归方法。
  • 随机森林 (Random Forest):基于多棵决策树的集成方法。
  • 梯度提升 (Gradient Boosting):如 XGBoost、LightGBM,用于高效的分类与回归。
无监督学习 (Unsupervised Learning)
  • k均值聚类 (k-Means Clustering):将数据分成多个簇。
  • 层次聚类 (Hierarchical Clustering):构建层次结构的簇。
  • 主成分分析 (PCA):用于数据降维和特征提取。
  • 独立成分分析 (ICA):用于信号分离或降维。
半监督学习 (Semi-supervised Learning)
  • 使用少量有标签数据和大量无标签数据,如自训练、自编码器(Autoencoder)。
强化学习 (Reinforcement Learning)
  • Q学习 (Q-Learning):基于价值函数的强化学习算法。
  • 深度Q网络 (DQN):结合深度学习的强化学习。
  • 策略梯度 (Policy Gradient):直接优化策略的强化学习方法。

2. 深度学习 (Deep Learning)

  • 前馈神经网络 (Feedforward Neural Networks, FNN):最基本的神经网络架构。
  • 卷积神经网络 (Convolutional Neural Networks, CNNs):主要用于图像处理,如目标检测、图像分类。
  • 循环神经网络 (Recurrent Neural Networks, RNNs):处理序列数据,如时间序列分析、文本生成。
    • 长短期记忆网络 (LSTM):RNN的改进,解决长期依赖问题。
    • 门控循环单元 (GRU):LSTM的轻量化版本。
  • 生成对抗网络 (Generative Adversarial Networks, GANs):生成高质量数据,如图像生成。
  • 变分自编码器 (Variational Autoencoder, VAE):用于生成和降维。
  • 图神经网络 (Graph Neural Networks, GNNs):处理图结构数据。

3. 自然语言处理 (Natural Language Processing, NLP)

  • 词嵌入 (Word Embeddings):如 Word2Vec、GloVe,用于表示词语的语义。
  • 循环神经网络 (RNN)LSTM/GRU:处理文本序列。
  • Transformer
    • BERT (Bidirectional Encoder Representations from Transformers):双向上下文理解模型。
    • GPT (Generative Pre-trained Transformer):生成式模型,用于文本生成。
  • 情感分析算法:基于分类的模型,用于提取情感极性。
  • 文本摘要算法:如 Seq2Seq 模型。

4. 计算机视觉 (Computer Vision)

  • 边缘检测算法:如 Canny、Sobel,用于图像预处理。
  • 目标检测算法:如 YOLO(You Only Look Once)、Faster R-CNN。
  • 图像分割算法:如 UNet、Mask R-CNN。
  • 人脸识别算法:如 OpenCV 的 Haar Cascades、深度学习的 FaceNet。
  • 图像生成与修复:如 GAN。

5. 优化算法

  • 梯度下降 (Gradient Descent):如 SGD、Momentum、Adam、RMSProp。
  • 遗传算法 (Genetic Algorithm):基于自然选择的优化方法。
  • 模拟退火算法 (Simulated Annealing):模仿物理退火过程。

6. 推荐系统算法

  • 协同过滤 (Collaborative Filtering):基于用户或物品的协作关系。
  • 矩阵分解 (Matrix Factorization):如 SVD,用于推荐。
  • 基于深度学习的推荐算法:如 DeepFM、Wide&Deep。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2286765.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ADC 精度 第二部分:总的未调整误差解析

在关于ADC精度的第一篇文章中,我们阐述了模拟-数字转换器(ADC)的分辨率和精度之间的区别。现在,我们可以深入探讨影响ADC总精度的因素,这通常被称为总未调整误差(TUE)。 你是否曾好奇ADC数据表…

密码强度验证代码解析:C语言实现与细节剖析

在日常的应用开发中,密码强度验证是保障用户账户安全的重要环节。今天,我们就来深入分析一段用C语言编写的密码强度验证代码,看看它是如何实现对密码强度的多维度检测的。 代码整体结构 这段C语言代码主要实现了对输入密码的一系列规则验证&a…

Vue - pinia

Pinia 是 Vue 3 的官方状态管理库,旨在替代 Vuex,提供更简单的 API 和更好的 TypeScript 支持。Pinia 的设计遵循了组合式 API 的理念,能够很好地与 Vue 3 的功能结合使用。 Pinia 的基本概念 Store: Pinia 中的核心概念,类似于…

JxBrowser 7.41.7 版本发布啦!

JxBrowser 7.41.7 版本发布啦! • 已更新 #Chromium 至更新版本 • 实施了多项质量改进 🔗 点击此处了解更多详情。 🆓 获取 30 天免费试用。

亚博microros小车-原生ubuntu支持系列:17 gmapping

前置依赖 先看下亚博官网的介绍 Gmapping简介 gmapping只适用于单帧二维激光点数小于1440的点,如果单帧激光点数大于1440,那么就会出【[mapping-4] process has died】 这样的问题。 Gmapping是基于滤波SLAM框架的常用开源SLAM算法。 Gmapping基于RBp…

Python 变量和简单数据类型思维导图_2025-01-30

变量和简单数据类型思维导图 下载链接腾讯云盘: https://share.weiyun.com/15A8hrTs

小麦重测序-文献精读107

Whole-genome sequencing of diverse wheat accessions uncovers genetic changes during modern breeding in China and the United States 中国和美国现代育种过程中小麦不同种质的全基因组测序揭示遗传变化 大豆重测序-文献精读53_gmsw17-CSDN博客 大豆重测序二&#xff…

Django基础之ORM

一.前言 上一节简单的讲了一下orm,主要还是做个了解,这一节将和大家介绍更加细致的orm,以及他们的用法,到最后再和大家说一下cookie和session,就结束了全部的django基础部分 二.orm的基本操作 1.settings.py&#x…

大模型知识蒸馏技术(2)——蒸馏技术发展简史

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl2006年模型压缩研究 知识蒸馏的早期思想可以追溯到2006年,当时Geoffrey Hinton等人在模型压缩领域进行了开创性研究。尽管当时深度学习尚未像今天这样广泛普及,但Hinton的研究已经为知识迁移和模…

android获取EditText内容,TextWatcher按条件触发

android获取EditText内容,TextWatcher按条件触发 背景:解决方案:效果: 背景: 最近在尝试用原生安卓实现仿element-ui表单校验功能,其中涉及到EditText组件内容的动态校验,初步实现功能后&#…

毕业设计--具有车流量检测功能的智能交通灯设计

摘要: 随着21世纪机动车保有量的持续增加,城市交通拥堵已成为一个日益严重的问题。传统的固定绿灯时长方案导致了大量的时间浪费和交通拥堵。为解决这一问题,本文设计了一款智能交通灯系统,利用车流量检测功能和先进的算法实现了…

[权限提升] 操作系统权限介绍

关注这个专栏的其他相关笔记:[内网安全] 内网渗透 - 学习手册-CSDN博客 权限提升简称提权,顾名思义就是提升自己在目标系统中的权限。现在的操作系统都是多用户操作系统,用户之间都有权限控制,我们通过 Web 漏洞拿到的 Web 进程的…

Qt Designer and Python: Build Your GUI

1.install pyside6 2.pyside6-designer.exe 发送到桌面快捷方式 在Python安装的所在 Scripts 文件夹下找到此文件。如C:\Program Files\Python312\Scripts 3. 打开pyside6-designer 设计UI 4.保存为simple.ui 文件,再转成py文件 用代码执行 pyside6-uic.exe simpl…

数据结构与算法之栈: LeetCode LCR 152. 验证二叉搜索树的后序遍历序列 (Ts版)

验证二叉搜索树的后序遍历序列 https://leetcode.cn/problems/er-cha-sou-suo-shu-de-hou-xu-bian-li-xu-lie-lcof/description/ 描述 请实现一个函数来判断整数数组 postorder 是否为二叉搜索树的后序遍历结果 示例 1 输入: postorder [4,9,6,5,8] 输出: false解释&#…

[STM32 - 野火] - - - 固件库学习笔记 - - -十三.高级定时器

一、高级定时器简介 高级定时器的简介在前面一章已经介绍过,可以点击下面链接了解,在这里进行一些补充。 [STM32 - 野火] - - - 固件库学习笔记 - - -十二.基本定时器 1.1 功能简介 1、高级定时器可以向上/向下/两边计数,还独有一个重复计…

IPhone13 Pro Max设备详情

目录 产品宣传图内部图——后设备详细信息 产品宣传图 内部图——后 设备详细信息 信息收集于HubWeb.cn

K8S中高级存储之PV和PVC

高级存储 PV和PVC 由于kubernetes支持的存储系统有很多,要求客户全都掌握,显然不现实。为了能够屏蔽底层存储实现的细节,方便用户使用, kubernetes引入PV和PVC两种资源对象。 PV(Persistent Volume) PV是…

[论文总结] 深度学习在农业领域应用论文笔记14

当下,深度学习在农业领域的研究热度持续攀升,相关论文发表量呈现出迅猛增长的态势。但繁荣背后,质量却不尽人意。相当一部分论文内容空洞无物,缺乏能够落地转化的实际价值,“凑数” 的痕迹十分明显。在农业信息化领域的…

WPF基础 | 深入 WPF 事件机制:路由事件与自定义事件处理

WPF基础 | 深入 WPF 事件机制:路由事件与自定义事件处理 一、前言二、WPF 事件基础概念2.1 事件的定义与本质2.2 常见的 WPF 事件类型 三、路由事件3.1 路由事件的概念与原理3.2 路由事件的三个阶段3.3 路由事件的标识与注册3.4 常见的路由事件示例 四、自定义事件处…

C++封装红黑树实现mymap和myset和模拟实现详解

文章目录 map和set的封装map和set的底层 map和set的模拟实现insertiterator实现的思路operatoroperator- -operator[ ] map和set的封装 介绍map和set的底层实现 map和set的底层 一份模版实例化出key的rb_tree和pair<k,v>的rb_tree rb_tree的Key和Value不是我们之前传统意…