代码随想录算法训练营第34天| 动态规划:01背包理论基础(二维和一维)、416. 分割等和子集

news2025/1/31 2:09:07

模板:

  • 今日学习的文章链接和视频链接
  • 自己看到题目的第一想法
  • 看完代码随想录之后的想法 
  • 自己实现过程中遇到哪些困难 
  • 今日收获,记录一下自己的学习时长

动态规划:01背包理论基础

题目链接:46. 携带研究材料(第六期模拟笔试)

学习链接:代码随想录

题解:

法一:

def fun():
    s = input().split()
    m = int(s[0])
    n = int(s[1])
    weight = list(map(int,input().split()))
    value= list(map(int,input().split()))



    dp = [[0]*(n+1) for _ in range(m)]

    for i in range(m):
        dp[i][0] = 0
        
    for j in range(1,n+1):
        if j >= weight[0]:
            dp[0][j]= value[0]
        else:
            dp[0][j]= 0
            
    for i in range(1,m):
        for j in range(1,n+1):
            if j < weight[i]:
                dp[i][j] = dp[i-1][j]
            else:
                dp[i][j] = max(dp[i-1][j],value[i]+dp[i-1][j-weight[i]])
    
    return dp[m-1][n]

print(fun())

梳理一下还是挺有意思的


动态规划:01背包理论基础(滚动数组)

题目链接:46. 携带研究材料(第六期模拟笔试)

学习链接:代码随想录

题解:

法一:

def fun():
    s = input().split()
    m = int(s[0])
    n = int(s[1])
    weight = list(map(int,input().split()))
    value= list(map(int,input().split()))

    dp = [0]*(n+1)

    for j in range(n+1):
        dp[j] = 0
                
    for i in range(m):
        for j in range(n,0,-1):
            if j < weight[i]:
                dp[j] = dp[j]
            else:
                dp[j] = max(dp[j],value[i]+dp[j-weight[i]])
    return dp[n]

print(fun())

正序和倒序的区别


416. 分割等和子集

题目链接:​​​​​​​416. 分割等和子集 - 力扣(LeetCode)

学习链接:​​​​​​​代码随想录

题解:

法一:

class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        # 用二维写 空间复杂度很高
        s = sum(nums)
        if s % 2 != 0:
            return False
        else:
            n = s//2
        m = len(nums)
        dp = [[0]*(n+1) for _ in range(m)]
        for i in range(m):
            dp[i][0] = 0
        for j in range(1,n+1):
            if nums[0] <= j:
                dp[0][j] = nums[0]
            else:
                dp[0][j] = 0
        for i in range(1,m):
            for j in range(1,n+1):
                if j < nums[i]:
                    dp[i][j] = dp[i-1][j]
                else:
                    dp[i][j] = max(dp[i-1][j],dp[i-1][j-nums[i]]+nums[i])
        return dp[m-1][n] == n

注意边界 nums的边界有点问题 可以思考一下

以及一维的解法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2286697.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

OpenEuler学习笔记(十四):在OpenEuler上搭建.NET运行环境

一、在OpenEuler上搭建.NET运行环境 基于包管理器安装 添加Microsoft软件源&#xff1a;运行命令sudo rpm -Uvh https://packages.microsoft.com/config/centos/8/packages-microsoft-prod.rpm&#xff0c;将Microsoft软件源添加到系统中&#xff0c;以便后续能够从该源安装.…

高级编码参数

1.跳帧机制 参考资料&#xff1a;frameskipping-hotedgevideo 跳帧机制用于优化视频质量和编码效率。它通过选择性地跳过某些帧并使用参考帧来预测和重建视频内容&#xff0c;从而减少编码所需的比特率&#xff0c;同时保持较高的视频质量。在视频编码过程中&#xff0c;如果…

gradio 合集

知识点 1&#xff1a;基本 Chatbot 创建 import gradio as gr 定义历史记录 history [gr.ChatMessage(role“assistant”, content“How can I help you?”), gr.ChatMessage(role“user”, content“What is the weather today?”)] 使用历史记录创建 Chatbot 组件 ch…

Python NumPy(5):广播、迭代

1 NumPy 广播(Broadcast) 广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式&#xff0c; 对数组的算术运算通常在相应的元素上进行。如果两个数组 a 和 b 形状相同&#xff0c;即满足 a.shape b.shape&#xff0c;那么 a*b 的结果就是 a 与 b 数组对应位相…

基于 AWS SageMaker 对 DeepSeek-R1-Distilled-Llama-8B 模型的精调与实践

在当今人工智能蓬勃发展的时代&#xff0c;语言模型的性能优化和定制化成为研究与应用的关键方向。本文聚焦于 AWS SageMaker 平台上对 DeepSeek-R1-Distilled-Llama-8B 模型的精调实践&#xff0c;详细探讨这一过程中的技术细节、操作步骤以及实践价值。 一、实验背景与目标 …

【Rust自学】15.1. 使用Box<T>智能指针来指向堆内存上的数据

喜欢的话别忘了点赞、收藏加关注哦&#xff0c;对接下来的教程有兴趣的可以关注专栏。谢谢喵&#xff01;(&#xff65;ω&#xff65;) 15.1.1. Box<T> box<T>可以被简单地理解为装箱&#xff0c;它是最简单的智能指针&#xff0c;允许你在堆内存上存储数据&am…

Hive:复杂数据类型之Map函数

Map函数 是Hive里面的一种复杂数据类型, 用于存储键值对集合。Map中的键和值可以是基础类型或复合类型&#xff0c;这使得Map在处理需要关联存储信息的数据时非常有用。 定义map时,需声明2个属性: key 和 value , map中是 key value 组成一个元素 key-value, key必须为原始类…

Matlab实现TCN-BiLSTM时间卷积神经网络结合双向长短期记忆神经网络多特征分类预测(附模型研究报告)

Matlab实现TCN-BiLSTM时间卷积神经网络结合双向长短期记忆神经网络多特征分类预测&#xff08;附模型研究报告&#xff09; 目录 Matlab实现TCN-BiLSTM时间卷积神经网络结合双向长短期记忆神经网络多特征分类预测&#xff08;附模型研究报告&#xff09;分类效果基本描述程序设…

Midjourney中的强变化、弱变化、局部重绘的本质区别以及其有多逆天的功能

开篇 Midjourney中有3个图片“微调”&#xff0c;它们分别为&#xff1a; 强变化&#xff1b;弱变化&#xff1b;局部重绘&#xff1b; 在Discord里分别都是用命令唤出的&#xff0c;但如今随着AI技术的发达在类似AI可人一类的纯图形化界面中&#xff0c;我们发觉这样的逆天…

NLP深度学习 DAY4:Word2Vec详解:两种模式(CBOW与Skip-gram)

用稀疏向量表示文本&#xff0c;即所谓的词袋模型在 NLP 有着悠久的历史。正如上文中介绍的&#xff0c;早在 2001年就开始使用密集向量表示词或词嵌入。Mikolov等人在2013年提出的创新技术是通过去除隐藏层&#xff0c;逼近目标&#xff0c;进而使这些单词嵌入的训练更加高效。…

【Linux】 冯诺依曼体系与计算机系统架构全解

Linux相关知识点可以通过点击以下链接进行学习一起加油&#xff01;初识指令指令进阶权限管理yum包管理与vim编辑器GCC/G编译器make与Makefile自动化构建GDB调试器与Git版本控制工具Linux下进度条 冯诺依曼体系是现代计算机设计的基石&#xff0c;其统一存储和顺序执行理念推动…

【最后203篇系列】005 -QTV200 Online

说明 借着春节休假&#xff0c;把这部分完工&#xff0c;然后2025年将正式的把量化研究的成果进行产品化输出。 首先&#xff0c;我会将策略的执行从脚本挪到服务。做法是将策略的逻辑放在微服务里&#xff0c;作为一个接口&#xff0c;而由sniffer来触发策略执行。我想这样策…

Midjourney基础-常用修饰词+权重的用法大全

用好修饰词很关键 Midjourney要用除了掌握好提示词的写法&#xff0c;按照上一篇《做Midjourney最好图文教程-提示词公式以及高级参数讲解》画面主体 场景氛围 主体行为 构图方式 艺术风格 图像质量。 要画出有质感的内容我们必须要掌握好“修饰词”&#xff0c;这些修饰…

Deepseek的RL算法GRPO解读

在本文中&#xff0c;我们将深入探讨Deepseek采用的策略优化方法GRPO&#xff0c;并顺带介绍一些强化学习&#xff08;Reinforcement Learning, RL&#xff09;的基础知识&#xff0c;包括PPO等关键概念。 策略函数&#xff08;policy&#xff09; 在强化学习中&#xff0c; a…

神经网络和深度学习

应用 类型 为什么近几年飞速发展 数据增长&#xff0c;算力增长&#xff0c;算法革新 逻辑回归 向量化 浅层神经网络(Shallow neural network) 单条训练数据前向传播计算表达式 batch训练数据前向传播计算表达式 反向传播计算表达式 参数随机初始化 不能全部设为0 原因是同一…

python学opencv|读取图像(四十八)使用cv2.bitwise_xor()函数实现图像按位异或运算

【0】基础定义 按位与运算&#xff1a;两个等长度二进制数上下对齐&#xff0c;全1取1&#xff0c;其余取0。 按位或运算&#xff1a;两个等长度二进制数上下对齐&#xff0c;有1取1&#xff0c;其余取0。 按位取反运算&#xff1a;一个二进制数&#xff0c;0变1,1变0。 按…

关联传播和 Python 和 Scikit-learn 实现

文章目录 一、说明二、什么是 Affinity Propagation。2.1 先说Affinity 传播的工作原理2.2 更多细节2.3 传播两种类型的消息2.4 计算责任和可用性的分数2.4.1 责任2.4.2 可用性分解2.4.3 更新分数&#xff1a;集群是如何形成的2.4.4 估计集群本身的数量。 三、亲和力传播的一些…

【etcd】二进制安装etcd

由于生产服务器不能使用yum 安装 etcd ,或者 安装的etcd 版本比较老&#xff0c;这里介绍一个使用二进制安装的方式。 根据安装文档编写一个下载脚本即可 &#xff1a; 指定 etcd 的版本 提供了两个下载地址 一个 Google 一个 Github&#xff0c; 不过都需要外网 注释掉删除保…

企业知识管理平台助力企业创新与竞争力提升的有效策略探讨

内容概要 在当今快速发展的商业环境中&#xff0c;企业知识管理平台的构建显得至关重要。它不仅为企业的知识资源提供了一个整合与分享的空间&#xff0c;还为企业的创新与竞争力提升提供了策略支持。本文将深入探讨企业知识管理平台的关键要素&#xff0c;包括知识获取、存储…

Java多线程——线程安全性

线程安全性 当多个线程访问某个类时&#xff0c;这个类始终都能表现出正确的行为&#xff0c;那么就称这个类是线程安全的 public class A {public void test(){//....} }无状态对象是线程安全的&#xff0c;其不包含任何域&#xff0c;也不包含任何对其他类中域的引用&#…