Python NumPy(5):广播、迭代

news2025/1/31 1:56:21

1 NumPy 广播(Broadcast)

        广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行。如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘。这要求维数相同,且各维度的长度相同。

import numpy as np

a = np.array([1, 2, 3, 4])
b = np.array([10, 20, 30, 40])
c = a * b
print(c)

# 当运算中的 2 个数组的形状不同时,numpy 将自动触发广播机制。如:
a = np.array([[0, 0, 0],
              [10, 10, 10],
              [20, 20, 20],
              [30, 30, 30]])
b = np.array([0, 1, 2])
print(a + b)

        下面的图片展示了数组 b 如何通过广播来与数组 a 兼容。

        4x3 的二维数组与长为 3 的一维数组相加,等效于把数组 b 在二维上重复 4 次再运算:

import numpy as np

a = np.array([[0, 0, 0],
              [10, 10, 10],
              [20, 20, 20],
              [30, 30, 30]])
b = np.array([1, 2, 3])
bb = np.tile(b, (4, 1))  # 重复 b 的各个维度
print(a + bb)

        广播的规则:

  • 让所有输入数组都向其中形状最长的数组看齐,形状中不足的部分都通过在前面加 1 补齐。
  • 输出数组的形状是输入数组形状的各个维度上的最大值。
  • 如果输入数组的某个维度和输出数组的对应维度的长度相同或者其长度为 1 时,这个数组能够用来计算,否则出错。
  • 当输入数组的某个维度的长度为 1 时,沿着此维度运算时都用此维度上的第一组值。

        对两个数组,分别比较他们的每一个维度(若其中一个数组没有当前维度则忽略),满足:

  • 数组拥有相同形状。
  • 当前维度的值相等。
  • 当前维度的值有一个是 1。

2 NumPy 迭代数组

        NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式。迭代器最基本的任务的可以完成对数组元素的访问。使用 arange() 函数创建一个 2X3 数组,并使用 nditer 对它进行迭代。

import numpy as np

a = np.arange(6).reshape(2, 3)
print('原始数组是:')
print(a)
print('\n')
print('迭代输出元素:')
for x in np.nditer(a):
    print(x, end=", ")
print('\n')

        以上实例不是使用标准 C 或者 Fortran 顺序,选择的顺序是和数组内存布局一致的,这样做是为了提升访问的效率,默认是行序优先(row-major order,或者说是 C-order)。这反映了默认情况下只需访问每个元素,而无需考虑其特定顺序。我们可以通过迭代上述数组的转置来看到这一点,并与以 C 顺序访问数组转置的 copy 方式做对比,如下实例:

import numpy as np

a = np.arange(6).reshape(2, 3)
for x in np.nditer(a.T):
    print(x, end=", ")
print('\n')

for x in np.nditer(a.T.copy(order='C')):
    print(x, end=", ")
print('\n')

        从上述例子可以看出,a 和 a.T 的遍历顺序是一样的,也就是他们在内存中的存储顺序也是一样的,但是 a.T.copy(order = 'C') 的遍历结果是不同的,那是因为它和前两种的存储方式是不一样的,默认是按行访问。

2.1 控制遍历顺序

  • for x in np.nditer(a, order='F'):Fortran order,即是列序优先;
  • for x in np.nditer(a.T, order='C'):C order,即是行序优先;

        可以通过显式设置,来强制 nditer 对象使用某种顺序:

import numpy as np

a = np.arange(0, 60, 5)
a = a.reshape(3, 4)
print('原始数组是:')
print(a)
print('\n')
print('原始数组的转置是:')
b = a.T
print(b)
print('\n')
print('以 C 风格顺序排序:')
c = b.copy(order='C')
print(c)
for x in np.nditer(c):
    print(x, end=", ")
print('\n')
print('以 F 风格顺序排序:')
c = b.copy(order='F')
print(c)
for x in np.nditer(c):
    print(x, end=", ")

2.2 修改数组中元素的值

        nditer 对象有另一个可选参数 op_flags。 默认情况下,nditer 将视待迭代遍历的数组为只读对象(read-only),为了在遍历数组的同时,实现对数组元素值的修改,必须指定 readwrite 或者 writeonly 的模式。

import numpy as np

a = np.arange(0, 60, 5)
a = a.reshape(3, 4)
print('原始数组是:')
print(a)
print('\n')
for x in np.nditer(a, op_flags=['readwrite']):
    x[...] = 2 * x
print('修改后的数组是:')
print(a)

2.3 使用外部循环

        nditer 类的构造器拥有 flags 参数,它可以接受下列值:

参数描述
c_index可以跟踪 C 顺序的索引
f_index可以跟踪 Fortran 顺序的索引
multi_index每次迭代可以跟踪一种索引类型
external_loop给出的值是具有多个值的一维数组,而不是零维数组

        在下面的实例中,迭代器遍历对应于每列,并组合为一维数组。

import numpy as np

a = np.arange(0, 60, 5)
a = a.reshape(3, 4)
print('原始数组是:')
print(a)
print('\n')
print('修改后的数组是:')
for x in np.nditer(a, flags=['external_loop'], order='F'):
    print(x, end=", ")

2.4 广播迭代

        如果两个数组是可广播的,nditer 组合对象能够同时迭代它们。 假设数组 a 的维度为 3X4,数组 b 的维度为 1X4 ,则使用以下迭代器(数组 b 被广播到 a 的大小)。

import numpy as np

a = np.arange(0, 60, 5)
a = a.reshape(3, 4)
print('第一个数组为:')
print(a)
print('\n')
print('第二个数组为:')
b = np.array([1, 2, 3, 4], dtype=int)
print(b)
print('\n')
print('修改后的数组为:')
for x, y in np.nditer([a, b]):
    print("%d:%d" % (x, y), end=", ")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2286693.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于 AWS SageMaker 对 DeepSeek-R1-Distilled-Llama-8B 模型的精调与实践

在当今人工智能蓬勃发展的时代,语言模型的性能优化和定制化成为研究与应用的关键方向。本文聚焦于 AWS SageMaker 平台上对 DeepSeek-R1-Distilled-Llama-8B 模型的精调实践,详细探讨这一过程中的技术细节、操作步骤以及实践价值。 一、实验背景与目标 …

【Rust自学】15.1. 使用Box<T>智能指针来指向堆内存上的数据

喜欢的话别忘了点赞、收藏加关注哦&#xff0c;对接下来的教程有兴趣的可以关注专栏。谢谢喵&#xff01;(&#xff65;ω&#xff65;) 15.1.1. Box<T> box<T>可以被简单地理解为装箱&#xff0c;它是最简单的智能指针&#xff0c;允许你在堆内存上存储数据&am…

Hive:复杂数据类型之Map函数

Map函数 是Hive里面的一种复杂数据类型, 用于存储键值对集合。Map中的键和值可以是基础类型或复合类型&#xff0c;这使得Map在处理需要关联存储信息的数据时非常有用。 定义map时,需声明2个属性: key 和 value , map中是 key value 组成一个元素 key-value, key必须为原始类…

Matlab实现TCN-BiLSTM时间卷积神经网络结合双向长短期记忆神经网络多特征分类预测(附模型研究报告)

Matlab实现TCN-BiLSTM时间卷积神经网络结合双向长短期记忆神经网络多特征分类预测&#xff08;附模型研究报告&#xff09; 目录 Matlab实现TCN-BiLSTM时间卷积神经网络结合双向长短期记忆神经网络多特征分类预测&#xff08;附模型研究报告&#xff09;分类效果基本描述程序设…

Midjourney中的强变化、弱变化、局部重绘的本质区别以及其有多逆天的功能

开篇 Midjourney中有3个图片“微调”&#xff0c;它们分别为&#xff1a; 强变化&#xff1b;弱变化&#xff1b;局部重绘&#xff1b; 在Discord里分别都是用命令唤出的&#xff0c;但如今随着AI技术的发达在类似AI可人一类的纯图形化界面中&#xff0c;我们发觉这样的逆天…

NLP深度学习 DAY4:Word2Vec详解:两种模式(CBOW与Skip-gram)

用稀疏向量表示文本&#xff0c;即所谓的词袋模型在 NLP 有着悠久的历史。正如上文中介绍的&#xff0c;早在 2001年就开始使用密集向量表示词或词嵌入。Mikolov等人在2013年提出的创新技术是通过去除隐藏层&#xff0c;逼近目标&#xff0c;进而使这些单词嵌入的训练更加高效。…

【Linux】 冯诺依曼体系与计算机系统架构全解

Linux相关知识点可以通过点击以下链接进行学习一起加油&#xff01;初识指令指令进阶权限管理yum包管理与vim编辑器GCC/G编译器make与Makefile自动化构建GDB调试器与Git版本控制工具Linux下进度条 冯诺依曼体系是现代计算机设计的基石&#xff0c;其统一存储和顺序执行理念推动…

【最后203篇系列】005 -QTV200 Online

说明 借着春节休假&#xff0c;把这部分完工&#xff0c;然后2025年将正式的把量化研究的成果进行产品化输出。 首先&#xff0c;我会将策略的执行从脚本挪到服务。做法是将策略的逻辑放在微服务里&#xff0c;作为一个接口&#xff0c;而由sniffer来触发策略执行。我想这样策…

Midjourney基础-常用修饰词+权重的用法大全

用好修饰词很关键 Midjourney要用除了掌握好提示词的写法&#xff0c;按照上一篇《做Midjourney最好图文教程-提示词公式以及高级参数讲解》画面主体 场景氛围 主体行为 构图方式 艺术风格 图像质量。 要画出有质感的内容我们必须要掌握好“修饰词”&#xff0c;这些修饰…

Deepseek的RL算法GRPO解读

在本文中&#xff0c;我们将深入探讨Deepseek采用的策略优化方法GRPO&#xff0c;并顺带介绍一些强化学习&#xff08;Reinforcement Learning, RL&#xff09;的基础知识&#xff0c;包括PPO等关键概念。 策略函数&#xff08;policy&#xff09; 在强化学习中&#xff0c; a…

神经网络和深度学习

应用 类型 为什么近几年飞速发展 数据增长&#xff0c;算力增长&#xff0c;算法革新 逻辑回归 向量化 浅层神经网络(Shallow neural network) 单条训练数据前向传播计算表达式 batch训练数据前向传播计算表达式 反向传播计算表达式 参数随机初始化 不能全部设为0 原因是同一…

python学opencv|读取图像(四十八)使用cv2.bitwise_xor()函数实现图像按位异或运算

【0】基础定义 按位与运算&#xff1a;两个等长度二进制数上下对齐&#xff0c;全1取1&#xff0c;其余取0。 按位或运算&#xff1a;两个等长度二进制数上下对齐&#xff0c;有1取1&#xff0c;其余取0。 按位取反运算&#xff1a;一个二进制数&#xff0c;0变1,1变0。 按…

关联传播和 Python 和 Scikit-learn 实现

文章目录 一、说明二、什么是 Affinity Propagation。2.1 先说Affinity 传播的工作原理2.2 更多细节2.3 传播两种类型的消息2.4 计算责任和可用性的分数2.4.1 责任2.4.2 可用性分解2.4.3 更新分数&#xff1a;集群是如何形成的2.4.4 估计集群本身的数量。 三、亲和力传播的一些…

【etcd】二进制安装etcd

由于生产服务器不能使用yum 安装 etcd ,或者 安装的etcd 版本比较老&#xff0c;这里介绍一个使用二进制安装的方式。 根据安装文档编写一个下载脚本即可 &#xff1a; 指定 etcd 的版本 提供了两个下载地址 一个 Google 一个 Github&#xff0c; 不过都需要外网 注释掉删除保…

企业知识管理平台助力企业创新与竞争力提升的有效策略探讨

内容概要 在当今快速发展的商业环境中&#xff0c;企业知识管理平台的构建显得至关重要。它不仅为企业的知识资源提供了一个整合与分享的空间&#xff0c;还为企业的创新与竞争力提升提供了策略支持。本文将深入探讨企业知识管理平台的关键要素&#xff0c;包括知识获取、存储…

Java多线程——线程安全性

线程安全性 当多个线程访问某个类时&#xff0c;这个类始终都能表现出正确的行为&#xff0c;那么就称这个类是线程安全的 public class A {public void test(){//....} }无状态对象是线程安全的&#xff0c;其不包含任何域&#xff0c;也不包含任何对其他类中域的引用&#…

Windows安装Miniconda和PySide6以及配置PyCharm

目录 1. 选择Miniconda 2. 下载Miniconda 3. 安装Miniconda 4. 在base环境下创建pyside6环境 5. 安装pyside6环境 6. 配置PyCharm环境 7. 运行第一个程序效果 1. 选择Miniconda 选择Miniconda而没有选择Anaconda&#xff0c;是因为它是一个更小的Anaconda发行版&#x…

C++传送锚点的内存寻址:内存管理

文章目录 1.C/C内存分布回顾2.C内存管理2.1 内存申请2.2 operator new与operator delete函数2.3 定位new表达式 3.关于内存管理的常见知识点3.1 malloc/free和new/delete的区别3.2 内存泄漏 希望读者们多多三连支持小编会继续更新你们的鼓励就是我前进的动力&#xff01; 继C语…

循序渐进kubernetes-RBAC(Role-Based Access Control)

文章目录 概要Kubernetes API了解 Kubernetes 中的 RBACRoles and Role Bindings:ClusterRoles and ClusterRoleBindings检查访问权限&#xff1a;外部用户结论 概要 Kubernetes 是容器化应用的强大引擎&#xff0c;但仅仅关注部署和扩展远远不够&#xff0c;集群的安全同样至…

《从因果关系的角度学习失真不变表示以用于图像恢复》学习笔记

paper&#xff1a;2303.06859 GitHub&#xff1a;lixinustc/Causal-IR-DIL: Distortion invariant feature learning for image restoration from a causality perspective 2023 CVPR 目录 摘要 1、介绍 1.1 图像修复任务 1.2 失真不变表示学习 1.3 因果效应估计的挑战…