Matlab实现TCN-BiLSTM时间卷积神经网络结合双向长短期记忆神经网络多特征分类预测(附模型研究报告)

news2025/1/31 1:17:32

Matlab实现TCN-BiLSTM时间卷积神经网络结合双向长短期记忆神经网络多特征分类预测(附模型研究报告)

目录

    • Matlab实现TCN-BiLSTM时间卷积神经网络结合双向长短期记忆神经网络多特征分类预测(附模型研究报告)
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现TCN-BiLSTM时间卷积神经网络结合双向长短期记忆神经网络多特征分类预测(附模型研究报告);
2.数据输入12个特征,输出4个类别,main.m是主程序,其余为函数文件,无需运行;
3.可视化展示分类准确率;
4.运行环境matlab2023b及以上。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现TCN-BiLSTM时间卷积神经网络结合双向长短期记忆神经网络多特征分类预测(附模型研究报告)


%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  读取数据
res = xlsread('data.xlsx');

%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1;               % 特征维度
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)

%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                    % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数

         
end

%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

t_train = categorical(T_train)';
t_test  = categorical(T_test )';

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train, num_dim, 1, 1, M));
P_test  =  double(reshape(P_test , num_dim, 1, 1, N));

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1} = P_test( :, :, 1, i);
end

%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 500,...                 % 最大训练次数 
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2286686.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Midjourney中的强变化、弱变化、局部重绘的本质区别以及其有多逆天的功能

开篇 Midjourney中有3个图片“微调”,它们分别为: 强变化;弱变化;局部重绘; 在Discord里分别都是用命令唤出的,但如今随着AI技术的发达在类似AI可人一类的纯图形化界面中,我们发觉这样的逆天…

NLP深度学习 DAY4:Word2Vec详解:两种模式(CBOW与Skip-gram)

用稀疏向量表示文本,即所谓的词袋模型在 NLP 有着悠久的历史。正如上文中介绍的,早在 2001年就开始使用密集向量表示词或词嵌入。Mikolov等人在2013年提出的创新技术是通过去除隐藏层,逼近目标,进而使这些单词嵌入的训练更加高效。…

【Linux】 冯诺依曼体系与计算机系统架构全解

Linux相关知识点可以通过点击以下链接进行学习一起加油!初识指令指令进阶权限管理yum包管理与vim编辑器GCC/G编译器make与Makefile自动化构建GDB调试器与Git版本控制工具Linux下进度条 冯诺依曼体系是现代计算机设计的基石,其统一存储和顺序执行理念推动…

【最后203篇系列】005 -QTV200 Online

说明 借着春节休假,把这部分完工,然后2025年将正式的把量化研究的成果进行产品化输出。 首先,我会将策略的执行从脚本挪到服务。做法是将策略的逻辑放在微服务里,作为一个接口,而由sniffer来触发策略执行。我想这样策…

Midjourney基础-常用修饰词+权重的用法大全

用好修饰词很关键 Midjourney要用除了掌握好提示词的写法,按照上一篇《做Midjourney最好图文教程-提示词公式以及高级参数讲解》画面主体 场景氛围 主体行为 构图方式 艺术风格 图像质量。 要画出有质感的内容我们必须要掌握好“修饰词”,这些修饰…

Deepseek的RL算法GRPO解读

在本文中,我们将深入探讨Deepseek采用的策略优化方法GRPO,并顺带介绍一些强化学习(Reinforcement Learning, RL)的基础知识,包括PPO等关键概念。 策略函数(policy) 在强化学习中, a…

神经网络和深度学习

应用 类型 为什么近几年飞速发展 数据增长,算力增长,算法革新 逻辑回归 向量化 浅层神经网络(Shallow neural network) 单条训练数据前向传播计算表达式 batch训练数据前向传播计算表达式 反向传播计算表达式 参数随机初始化 不能全部设为0 原因是同一…

python学opencv|读取图像(四十八)使用cv2.bitwise_xor()函数实现图像按位异或运算

【0】基础定义 按位与运算:两个等长度二进制数上下对齐,全1取1,其余取0。 按位或运算:两个等长度二进制数上下对齐,有1取1,其余取0。 按位取反运算:一个二进制数,0变1,1变0。 按…

关联传播和 Python 和 Scikit-learn 实现

文章目录 一、说明二、什么是 Affinity Propagation。2.1 先说Affinity 传播的工作原理2.2 更多细节2.3 传播两种类型的消息2.4 计算责任和可用性的分数2.4.1 责任2.4.2 可用性分解2.4.3 更新分数:集群是如何形成的2.4.4 估计集群本身的数量。 三、亲和力传播的一些…

【etcd】二进制安装etcd

由于生产服务器不能使用yum 安装 etcd ,或者 安装的etcd 版本比较老,这里介绍一个使用二进制安装的方式。 根据安装文档编写一个下载脚本即可 : 指定 etcd 的版本 提供了两个下载地址 一个 Google 一个 Github, 不过都需要外网 注释掉删除保…

企业知识管理平台助力企业创新与竞争力提升的有效策略探讨

内容概要 在当今快速发展的商业环境中,企业知识管理平台的构建显得至关重要。它不仅为企业的知识资源提供了一个整合与分享的空间,还为企业的创新与竞争力提升提供了策略支持。本文将深入探讨企业知识管理平台的关键要素,包括知识获取、存储…

Java多线程——线程安全性

线程安全性 当多个线程访问某个类时,这个类始终都能表现出正确的行为,那么就称这个类是线程安全的 public class A {public void test(){//....} }无状态对象是线程安全的,其不包含任何域,也不包含任何对其他类中域的引用&#…

Windows安装Miniconda和PySide6以及配置PyCharm

目录 1. 选择Miniconda 2. 下载Miniconda 3. 安装Miniconda 4. 在base环境下创建pyside6环境 5. 安装pyside6环境 6. 配置PyCharm环境 7. 运行第一个程序效果 1. 选择Miniconda 选择Miniconda而没有选择Anaconda,是因为它是一个更小的Anaconda发行版&#x…

C++传送锚点的内存寻址:内存管理

文章目录 1.C/C内存分布回顾2.C内存管理2.1 内存申请2.2 operator new与operator delete函数2.3 定位new表达式 3.关于内存管理的常见知识点3.1 malloc/free和new/delete的区别3.2 内存泄漏 希望读者们多多三连支持小编会继续更新你们的鼓励就是我前进的动力! 继C语…

循序渐进kubernetes-RBAC(Role-Based Access Control)

文章目录 概要Kubernetes API了解 Kubernetes 中的 RBACRoles and Role Bindings:ClusterRoles and ClusterRoleBindings检查访问权限:外部用户结论 概要 Kubernetes 是容器化应用的强大引擎,但仅仅关注部署和扩展远远不够,集群的安全同样至…

《从因果关系的角度学习失真不变表示以用于图像恢复》学习笔记

paper:2303.06859 GitHub:lixinustc/Causal-IR-DIL: Distortion invariant feature learning for image restoration from a causality perspective 2023 CVPR 目录 摘要 1、介绍 1.1 图像修复任务 1.2 失真不变表示学习 1.3 因果效应估计的挑战…

亚博microros小车-原生ubuntu支持系列:16 机器人状态估计

本来想测试下gmapping建图,但是底层依赖了yahboomcar_bringup做底层的数据处理,所以先把依赖的工程导入。 程序启动后,会订阅imu和odom数据,过滤掉一部分的imu数据后,然后与odom数据进行融合,最后输出一个…

Greenplum临时表未清除导致库龄过高处理

1.问题 Greenplum集群segment后台日志报错 2.回收库龄 master上执行 vacuumdb -F -d cxy vacuumdb -F -d template1 vacuumdb -F -d rptdb 3.回收完成后检查 仍然发现segment还是有库龄报警警告信息发出 4.检查 4.1 在master上检查库年龄 SELECT datname, datfrozen…

【Unity3D】实现横版2D游戏角色二段跳、蹬墙跳、扶墙下滑

目录 一、二段跳、蹬墙跳 二、扶墙下滑 一、二段跳、蹬墙跳 GitHub - prime31/CharacterController2D 下载工程后直接打开demo场景:DemoScene(Unity 2019.4.0f1项目环境) Player物体上的CharacterController2D,Mask添加Wall层…

mybatis(134/134)完结

一级缓存(默认情况下开启)同一个sqlsession中执行相同的查询语句走一级缓存 二级缓存 :同一个sqlsessionfactory,sqlsession关闭了才会将一级缓存提交到二级缓存中 外部编写的缓存 PageHelper插件:方便进行分页&#x…