PyTorch使用教程(8)-一文了解torchvision

news2025/1/22 3:34:22

一、什么是torchvision

torchvision提供了丰富的功能,主要包括数据集、模型、转换工具和实用方法四大模块。数据集模块内置了多种广泛使用的图像和视频数据集,如ImageNet、CIFAR-10、MNIST等,方便开发者进行训练和评估。模型模块封装了大量经典的预训练模型结构,如AlexNet、VGG、ResNet等,支持迁移学习和模型扩展。转换工具模块提供了丰富的数据增强和预处理操作,如裁剪、旋转、翻转、归一化等,有助于提升模型的泛化能力。实用方法模块则包含了一系列辅助工具,如图像保存、创建图像网格等,便于实验结果的可视化。
在这里插入图片描述

torchvision与PyTorch深度集成,支持CPU和GPU加速,能够在不同平台上高效运行。它简化了从数据准备到模型训练再到结果可视化的整个流程,为计算机视觉研究和开发提供了极大的便利。无论是初学者还是经验丰富的开发者,都可以通过torchvision快速构建和训练自己的视觉模型,加速AI应用的开发进程。

二、核心功能介绍

torchvision的核心功能主要包括数据集加载、图像转换、预训练模型加载、数据加载器以及实用工具等,以下是对这些功能的详细介绍及相关示例代码:

2.1 数据集加载

torchvision.datasets提供了多种流行的计算机视觉数据集,如CIFAR-10、MNIST、ImageNet等,支持一键下载和加载。

from torchvision import datasets

# 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=None)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=None)

2.2 图像转换

torchvision.transforms模块提供了丰富的图像转换操作,如缩放、裁剪、翻转、归一化等,这些操作可以单独使用,也可以组合使用,以形成数据增强流水线。
在这里插入图片描述

from torchvision import transforms
# 定义转换操作
transform = transforms.Compose([
    transforms.Resize((256, 256)),#缩放
    transforms.RandomCrop(224),#随机裁剪
    transforms.RandomHorizontalFlip(),#随机翻转
    transforms.ToTensor(), #张量转化
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# 应用转换操作
image = Image.open('path_to_image.jpg')
processed_image = transform(image)

2.3 预训练模型加载

torchvision.models模块提供了多种经典的预训练模型,如ResNet、VGG、AlexNet等,可以直接加载这些模型进行迁移学习或作为基准模型。
在这里插入图片描述

from torchvision import models
# 加载预训练的ResNet-50模型
model = models.resnet50(pretrained=True)

2.4 数据加载器

torch.utils.data.DataLoader是一个实用的数据加载器,可以与torchvision提供的数据集一起使用,方便地进行批量加载和数据迭代。

from torch.utils.data import DataLoader

# 使用DataLoader加载数据
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)

2.5 实用工具

torchvision还提供了一些实用工具,如torchvision.utils.make_grid,可以将多个图像拼接成一个网格图像,便于可视化。

from torchvision import utils
import matplotlib.pyplot as plt

# 获取一批图像
images, _ = next(iter(train_loader))

# 将图像拼接成网格
grid = utils.make_grid(images)

# 显示图像
plt.imshow(grid.permute(1, 2, 0))
plt.show()

3. 小结

‌TorchVision是PyTorch生态系统中的关键库,专为计算机视觉设计,提供数据集、预训练模型、图像转换工具和实用功能‌。它简化了视觉项目的开发,支持数据加载、预处理、模型迁移学习等,是构建和训练计算机视觉模型的重要工具‌

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2280130.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何将自己本地项目开源到github上?

环境: LLMB项目 问题描述: 如何将自己本地项目开源到github上? 解决方案: 步骤 1: 准备本地项目 确保项目整洁 确认所有的文件都在合适的位置,并且项目的 README.md 文件已经完善。检查是否有敏感信息&#xff0…

ConvBERT:通过基于跨度的动态卷积改进BERT

摘要 像BERT及其变体这样的预训练语言模型最近在各种自然语言理解任务中取得了令人印象深刻的性能。然而,BERT严重依赖于全局自注意力机制,因此存在较大的内存占用和计算成本。尽管所有的注意力头都从全局角度查询整个输入序列以生成注意力图&#xff0…

2025web建议

随便收集的信息 新手入门路线推荐 第一步:Web安全相关概念 建议学习时间:2周 学习内容如下: 1、熟悉基本概念(SQL注入、上传、XSS、CSRF、一句话木马等)。 2、通过关键字(SQL注入、上传、XSS、CSRF、一句话木马等)进行Google。 3、阅读《Web…

用JAVA实现人工智能:采用框架Spring AI Java

Spring AI 集成人工智能,为Java项目添加AI功能指南 本文主旨是用实际的可操作的代码,介绍Java怎么通过spring ai 接入大模型。 例子使用spring ai alibaba QWen千问api完成,你可以跑通以后换自己的实现。QWen目前有100万免费Token额度&…

【JDBC】数据库连接的艺术:深入解析数据库连接池、Apache-DBUtils与BasicDAO

文章目录 前言🌍 一.连接池❄️1. 传统获取Conntion问题分析❄️2. 数据库连接池❄️3.连接池之C3P0技术🍁3.1关键特性🍁3.2配置选项🍁3.3使用示例 ❄️4. 连接池之Druid技术🍁 4.1主要特性🍁 4.2 配置选项…

canvas 图片组合并进行下载

运行图片&#xff1a; 思路&#xff1a;先画一个背景图片&#xff0c;再画一个二维码定位到你想要的位置&#xff0c;最后直接下载即可&#xff0c;可以扩散一下思维&#xff0c;画简单的海报的时候&#xff0c;也可以的 源代码 <!DOCTYPE html> <html lang"en&q…

记一次升级请求创建报错问题的调查过程(Windchill)

问题现象描述&#xff1a; ​ 新建申请请求单&#xff0c;在选择某些物料时会报此错误&#xff0c;选另外的物料时又可以正常创建&#xff0c;不报此错误。 问题原因分析&#xff1a; ​ 1.分析后台日志 —没有任何进展&#xff0c;此报错应该是前端的报错 ​ 2.从前端下手…

自旋锁与CAS

上文我们认识了许许多多的锁&#xff0c;此篇我们的CAS就是从上文的锁策略开展的新概念&#xff0c;我们来一探究竟吧 1. 什么是CAS&#xff1f; CAS: 全称Compare and swap&#xff0c;字⾯意思:“比较并交换”&#xff0c;⼀个CAS涉及到以下操作&#xff1a; 我们假设内存中…

线程池遇到未处理的异常会崩溃吗?

线程池中的 execute 和 submit 方法详解 目录 引言execute 方法 使用示例代码 submit 方法 2.1 提交 Callable 任务2.2 提交 Runnable 任务 遇到未处理异常 3.1 execute 方法遇到未处理异常3.2 submit 方法遇到未处理异常 小结 引言 在多线程编程中&#xff0c;线程池是提高性…

2024年第十五届蓝桥杯青少组国赛(c++)真题—快速分解质因数

快速分解质因数 完整题目和在线测评可点击下方链接前往&#xff1a; 快速分解质因数_C_少儿编程题库学习中心-嗨信奥https://www.hixinao.com/tiku/cpp/show-3781.htmlhttps://www.hixinao.com/tiku/cpp/show-3781.html 若如其他赛事真题可自行前往题库中心查找&#xff0c;题…

Linux内核编程(二十一)USB驱动开发

一、驱动类型 USB 驱动开发主要分为两种&#xff1a;主机侧的驱动程序和设备侧的驱动程序。一般我们编写的都是主机侧的USB驱动程序。 主机侧驱动程序用于控制插入到主机中的 USB 设备&#xff0c;而设备侧驱动程序则负责控制 USB 设备如何与主机通信。由于设备侧驱动程序通常与…

AI Agent:深度解析与未来展望

一、AI Agent的前世&#xff1a;从概念到萌芽 &#xff08;一&#xff09;早期探索 AI Agent的概念可以追溯到20世纪50年代&#xff0c;早期的AI研究主要集中在简单的规则系统上&#xff0c;这些系统的行为是确定性的&#xff0c;输出由输入决定。随着时间的推移&#xff0c;…

SuperMap iClient3D for WebGL选中抬升特效

在大屏展示系统中&#xff0c;对行政区划数据制作了立体效果&#xff0c;如果希望选中某一行政区划进行重点介绍&#xff0c;目前常见的方式是通过修改选中对象色彩、边线等方式进行实现&#xff1b;这里提供另外一种偏移动效的思路&#xff0c;并提供下钻功能&#xff0c;让地…

领域算法 - 字符串匹配算法

字符串匹配算法 文章目录 字符串匹配算法一&#xff1a;KMP算法1&#xff1a;算法概述2&#xff1a;部分匹配表3&#xff1a;算法实现 二&#xff1a;Moore算法1&#xff1a;算法概述2&#xff1a;代码实现3&#xff1a;完整实现 三&#xff1a;马拉车算法1&#xff1a;算法概述…

小红书用户作品列表 API 系列,返回值说明

item_search_shop_video-获得某书用户作品列表 公共参数 名称类型必须描述keyString是调用key&#xff08;必须以GET方式拼接在URL中&#xff09;secretString是调用密钥api_nameString是API接口名称&#xff08;包括在请求地址中&#xff09;[item_search,item_get,item_sea…

LeetCode hot 力扣热题100 排序链表

归并忘了 直接抄&#xff01; class Solution { // 定义一个 Solution 类&#xff0c;包含链表排序的相关方法。// 使用快慢指针找到链表的中间节点&#xff0c;并断开链表为两部分ListNode* middleNode(ListNode* head) { ListNode* slow head; // 慢指针 slow 初始化为链表…

JavaScript正则表达式解析:模式、方法与实战案例

目录 一、什么是正则表达式 1.创建正则表达式 2.标志&#xff08;Flags&#xff09; 3.基本模式 &#xff08;1&#xff09;字符匹配 &#xff08;2&#xff09;位置匹配 &#xff08;3&#xff09;数量匹配 二、常用的正则表达式方法和属性 1.test()‌ 2.match()‌ …

Nginx在Linux中的最小化安装方式

1. 安装依赖 需要安装的东西&#xff1a; wget​&#xff0c;方便我们下载Nginx的包。如果是在Windows下载&#xff0c;然后使用SFTP上传到服务器中&#xff0c;那么可以不安装这个软件包。gcc g​&#xff0c;Nginx是使用C/C开发的服务器&#xff0c;等一下安装会用到其中的…

【大模型】ChatGPT 高效处理图片技巧使用详解

目录 一、前言 二、ChatGPT 4 图片处理介绍 2.1 ChatGPT 4 图片处理概述 2.1.1 图像识别与分类 2.1.2 图像搜索 2.1.3 图像生成 2.1.4 多模态理解 2.1.5 细粒度图像识别 2.1.6 生成式图像任务处理 2.1.7 图像与文本互动 2.2 ChatGPT 4 图片处理应用场景 三、文生图操…

基于python+Django+mysql鲜花水果销售商城网站系统设计与实现

博主介绍&#xff1a;黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者&#xff0c;CSDN博客专家&#xff0c;在线教育专家&#xff0c;CSDN钻石讲师&#xff1b;专注大学生毕业设计教育、辅导。 所有项目都配有从入门到精通的基础知识视频课程&#xff…