Java设计模式——单例模式(特性、各种实现、懒汉式、饿汉式、内部类实现、枚举方式、双重校验+锁)

news2025/1/17 14:25:19
我是一个计算机专业研0的学生卡蒙Camel🐫🐫🐫(刚保研)
记录每天学习过程(主要学习Java、python、人工智能),总结知识点(内容来自:自我总结+网上借鉴)
希望大家能一起发现问题和补充,也欢迎讨论👏👏👏

文章目录

    • 单例模式1️⃣
      • 特性💪
      • 单例模式的类型与实现:
        • 类型
        • 懒汉式实现(线程不安全)
        • 懒汉式实现(线程安全)
        • 双重锁校验懒汉式(线程安全)
        • 饿汉式实现(线程安全)
        • 使用类的内部类实现⭐
        • 枚举方式实现单例(推荐)👍

单例模式1️⃣

单例模式是指在内存中只会创建且仅创建一次对象的设计模式。让你能够保证一个类只有一个实例, 并提供一个访问该实例的全局节点。

特性💪

  1. 唯一性:整个系统中,单例类只能有一个实例。
  2. 私有化构造函数:防止外部通过new关键字直接创建对象。
  3. 静态方法提供全局访问点:通常使用getInstance()方法来获取该类的唯一实例。
  4. 延迟实例化(懒加载):有些实现会在第一次调用getInstance()时才创建实例,以节省资源。

单例模式的类型与实现:

类型
  1. 懒汉式:在真正需要使用对象时才去创建该单例类对象
  2. 饿汉式:在类加载时已经创建好该单例对象,等待被程序使用
懒汉式实现(线程不安全)

只有当调用getInstance()方法时才会创建单例对象,这种方式实现了延迟加载,但是需要考虑多线程环境下的线程安全问题。

img

public class Singleton {
    private static Singleton instance;
    
    private Singleton() {}
    
    public static Singleton getInstance() {
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}
  • 单例模式不允许外部直接创建,所以构造函数添加私有属性private
  • 这种方式满足懒汉式,但是在并发场景下,多个线程使用单例对象可能导致实例并存,从而违反了单例要求
懒汉式实现(线程安全)

上述懒汉式实现是线程不安全的(例如同时两个线程去获取单例对象,如果此时单例对象还未创建,可能会导致同事创建两个对象,从而违反单例),故我们要解决线程安全问题。

img

最容易想到的方法:使用锁(synchronized)给类加锁来保证线程安全

public class Singleton {
    private static Singleton instance;
    
    private Singleton() {}
    
    public static synchronized Singleton getInstance() {
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}
双重锁校验懒汉式(线程安全)

但是上述方法每次获取对象的时候都要去先获取锁,并发性能不是很好

可以进行优化:(如果没有实例化则加锁创建,如果实例化了则直接获取,可以使得已经实例化的单例对象在获取单例对象时无需先获取锁,而是直接获取对象)

使用Double Check(双重校验) + Lock(加锁) 的写法:

public class Singleton {
    private static volatile Singleton instance;

    private Singleton() {}

    public static Singleton getInstance() {
        if (instance == null) {  // 第一次检查,为了避免不必要的同步操作,提高性能。
            synchronized(Singleton.class) { 
                if (instance == null) {  // 第二次检查,以确保即使在多线程环境下也只创建一个实例。
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

同时我们也使用了volatile关键字去确保instance变量的更新对所有线程都是立即可见的,并且禁止指令重排序,保证多线程环境下的正确性

  1. 防止指令重排序: 在多线程环境下,JVM为了优化性能可能会对指令进行重排序。对于单例对象的创建而言,构造函数内部的操作可能被重排序到对象引用赋值之后。例如,如果一个线程正在执行实例化操作,它可能会先将对象引用设置为非空(即指向一块内存),然后再完成对象的初始化。这种情况下,另一个线程可能看到的是一个部分初始化的对象(因为对象的引用不是null了),这会导致不可预测的行为或错误。volatile关键字可以禁止这种指令重排序,保证对象完全初始化之后才会被其他线程看到。
  2. 可见性保证volatile关键字确保了一个线程对共享变量(在这个场景下是单例对象的引用)的修改对于其他线程是立即可见的。也就是说,当一个线程成功创建了单例对象后,所有其他线程都能看到这个对象已经被正确地初始化了,而不会读取到旧的或者默认的值(如null)。这避免了多个线程同时创建多个实例的情况。
饿汉式实现(线程安全)

在类加载的时候就创建好单例对象,这种方式简单但不够灵活,因为它不能做到延迟加载。

public class Singleton{
    
    private static final Singleton singleton = new Singleton();
    
    private Singleton(){}
    
    public static Singleton getInstance() {
        return singleton;
    }
}

在类加载的时候,private static final Singleton singleton = new Singleton();这行代码已经实例化好了一个单例对象在内存中。

使用类的内部类实现⭐

利用了Java语言的类加载机制,只有当调用getInstance()方法时,内部类才会被加载,从而实现了懒加载和线程安全,同时不会因为加锁的方式耗费性能。

public class Singleton {
    private Singleton() {}
    
    private static class SingletonHolder {
        private static final Singleton INSTANCE = new Singleton();
    }
    
    public static Singleton getInstance() {
        return SingletonHolder.INSTANCE;
    }
}
  • 这主要是因为JVM虚拟机可以保证多线程并发访问的正确性,也就是一个类的构造方法在多线程环境下可以被正确的加载。
  • 此种方式也是非常推荐使用的一种单例模式
枚举方式实现单例(推荐)👍

在Java中,使用枚举(Enum)来实现单例模式是一种非常简洁且高效的方法。枚举类型的单例不仅能够防止反射攻击和序列化导致的重复实例化问题,而且代码量极少,易于理解和维护。这是因为Java的枚举机制保证了每个枚举常量的唯一性,并且在类加载时自动初始化

public enum Singleton {
    INSTANCE;

    private final String property;

    // 初始化属性值
    Singleton() {
        this.property = "Some Value";
    }

    public String getProperty() {
        return property;
    }

    // 其他业务方法
    public void doSomething() {
        // 方法逻辑...
    }
}

public class Client {
    public static void main(String[] args) {
        Singleton singleton = Singleton.INSTANCE;
        singleton.doSomething();
        System.out.println(singleton.getProperty());
    }
}

枚举单例的优点:

  1. 天然线程安全:由于枚举常量在类加载时就被初始化,所以不需要额外的同步代码来保证线程安全。
  2. 防止反序列化创建新实例:枚举类型具有内在的序列化机制,如果尝试反序列化一个枚举类型的对象,它总是返回现有的枚举常量,而不会创建新的实例。
  3. 防止反射攻击:即使通过反射调用私有构造函数,也无法创建新的枚举实例。
  4. 简洁:相比于其他单例模式的实现方式,枚举单例的代码更加简洁明了。
  5. 延迟加载:虽然枚举类型不是天生支持懒加载,但是可以通过将实际的工作委托给另一个静态内部类来实现这一点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2278043.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySQL查询相关内容

创建员工库和表; mysql> create database mydb8_worker; Query OK, 1 row affected (0.01 sec)mysql> use mydb8_worker; Database changed mysql> create table t_worker(-> department_id int(11) not null comment 部门号,-> worker_id int(11)…

微信小程序原生与 H5 交互方式

在微信小程序中,原生与 H5 页面(即 WebView 页面)之间的交互通常有以下几种方式: 1. 使用 postMessage 进行通信 微信小程序的 WebView 页面和原生小程序页面可以通过 postMessage 来进行数据传递。 WebView 页面向原生小程序发…

shell脚本基础练习

1、需求&#xff1a;判断192.168.1.0/24网络中&#xff0c;当前在线的ip有哪些&#xff0c;并编写脚本打印出来。&#xff08;以前10个网络IP为例&#xff0c;可以进行更改&#xff09; #!/bin/bashfor ((i1;i<10;i)) doping -c1 -w1 192.168.1.$i &> /dev/null &…

【全栈开发】----Mysql基本配置与使用

本篇是在已下载Mysql的情况下进行的&#xff0c;若还未下载或未创建Mysql服务&#xff0c;请转到这篇: 2024 年 MySQL 8.0.40 安装配置、Workbench汉化教程最简易&#xff08;保姆级&#xff09;_mysql8.0.40下载安装教程-CSDN博客 本文对于mysql的操作均使用控制台sql原生代码…

Shell的运行原理以及Linux中的权限问题

Shell的运行原理 Linux严格意义上说的是一个操作系统&#xff0c;我们称之为“核心&#xff08;kernel&#xff09;“ &#xff0c;但我们一般用户&#xff0c;不能直接使用kernel。 而是通过kernel的“外壳”程序&#xff0c;也就是所谓的shell&#xff0c;来与kernel沟通。如…

【0x0084】HCI_Set_Min_Encryption_Key_Size命令详解

目录 一、命令概述 二、命令格式及参数 2.1 HCI_Set_Min_Encryption_Key_Size命令格式 2.2. Min_Encryption_Key_Size 三、生成事件及参数 3.1. HCI_Command_Complete 事件 3.2. Status 四、命令的执行流程 4.1. 主机端准备阶段 4.2. 命令发送阶段 4.3. 控制器接收和…

【MATLAB代码】CV和CA模型组成的IMM(滤波方式为UKF),可复制粘贴源代码

该代码实现了一维无迹卡尔曼滤波器(UKF)与交互式多模型(IMM)结合的状态估计。代码分为多个部分,主要功能包括参数定义、观测数据生成、状态估计、模型更新以及结果可视化。 文章目录 运行结果程序代码主要功能代码结构应用场景注意事项运行结果 程序代码 下方源代码直接粘…

机器视觉4-损失函数与梯度计算

机器视觉4-损失函数与梯度计算 损失函数定义公式及变量含义整体理解 多类支撑向量机损失正则项与超参数什么是超参数一、与模型参数的区别二、常见的超参数三、调参方法 什么是优化一、参数优化的重要性二、利用损失函数进行反馈三、调整分类器参数的方法 优化的目标一、最小化…

极客说|Azure AI Agent Service 结合 AutoGen/Semantic Kernel 构建多智能体解决⽅案

作者&#xff1a;卢建晖 - 微软高级云技术布道师 「极客说」 是一档专注 AI 时代开发者分享的专栏&#xff0c;我们邀请来自微软以及技术社区专家&#xff0c;带来最前沿的技术干货与实践经验。在这里&#xff0c;您将看到深度教程、最佳实践和创新解决方案。关注「极客说」&am…

sparkRDD教程之基本命令

作者&#xff1a;nchu可乐百香果 指导者&#xff1a;nchu-YoungDragon 1.前期准备 &#xff08;1&#xff09;从迅雷网盘上面下载这个项目&#xff0c;并且把scala&#xff0c;maven和java环境配置好 网盘链接&#xff1a; 分享文件&#xff1a;SparkRDD.zip 链接&#xf…

基于 Electron 应用的安全测试基础 — 提取和分析 .asar 文件

视频教程在我主页简介或专栏里 目录&#xff1a; 提取和分析 .asar 文件 4.1. .asar 文件提取工具 4.1.1. 为什么选择 NPX&#xff1f; 4.2. 提取过程 4.3. 提取 .asar 文件的重要性 4.3.1 关键词 4.3.2 执行关键词搜索 4.3.2.1 使用命令行工具“grep”进行关键词搜索 4.3.2…

C# 获取PDF文档中的字体信息(字体名、大小、颜色、样式等

在设计和出版行业中&#xff0c;字体的选择和使用对最终作品的质量有着重要影响。然而&#xff0c;有时我们可能会遇到包含未知字体的PDF文件&#xff0c;这使得我们无法准确地复制或修改文档。获取PDF中的字体信息可以解决这个问题&#xff0c;让我们能够更好地处理这些文件。…

Django框架:python web开发

1.环境搭建&#xff1a; &#xff08;a&#xff09;开发环境&#xff1a;pycharm &#xff08;b&#xff09;虚拟环境&#xff08;可有可无&#xff0c;优点&#xff1a;使用虚拟环境可以把使用的包自动生成一个文件&#xff0c;其他人需要使用时可以直接选择导入包&#xff…

2024最新版JavaScript逆向爬虫教程-------基础篇之Chrome开发者工具学习

目录 一、打开Chrome DevTools的三种方式二、Elements元素面板三、Console控制台面板四、Sources面板五、Network面板六、Application面板七、逆向调试技巧 7.1 善用搜索7.2 查看请求调用堆栈7.3 XHR 请求断点7.4 Console 插桩7.5 堆内存函数调用7.6 复制Console面板输出 工…

联通用户管理系统(一)

#联通用户管理系统&#xff08;一&#xff09; 1.新建项目 如果你是windows的话&#xff0c;界面应该是如下的&#xff1a; 2.创建app python manage.py startapp app01一般情况下&#xff1a;我们是在pycharm的终端中运行上述指令&#xff0c;但是pychrm中为我们提供了工具…

【网络编程】基础知识

目录 网络发展史 局域网和广域网 局域网&#xff08;LAN&#xff09; 广域网&#xff08;Wan&#xff09; 光猫 路由器 网线 设备通信的要素 IP地址 基本概念 地址划分 特殊地址&#xff08;后续编程使用&#xff09; IP地址转换 字节序 网络模型 网络的体系结…

生产环境中常用的设计模式

生产环境中常用的设计模式 设计模式目的使用场景示例单例模式保证一个类仅有一个实例&#xff0c;并提供一个访问它的全局访问点- 日志记录器- 配置管理器工厂方法模式定义一个创建对象的接口&#xff0c;让子类决定实例化哪个类- 各种工厂类&#xff08;如视频游戏工厂模式创…

C#读写ini配置文件保存设置参数

本示例使用设备&#xff1a;https://item.taobao.com/item.htm?spma21dvs.23580594.0.0.52de2c1b5P5rkA&ftt&id22173428704 [DllImport("kernel32", CharSet CharSet.Unicode)] public static extern uint GetPrivateProfileString(string lpAppName, stri…

C# .NetCore 使用 Flurl.Http 与 HttpClient 请求处理流式响应

AI对话接口采用流式返回&#xff1a; 1、使用Flurl处理返回的数据流 using Flurl; using Flurl.Http; [HttpPost] public async Task<string> GetLiushiChatLaw() { //1、请求参数&#xff0c;根据实际情况 YourModel request new YourModel();string allStr …

ResNet (Residual Network) - 残差网络:深度卷积神经网络的突破

一、引言 在计算机视觉领域&#xff0c;图像识别一直是一个核心且具有挑战性的任务。随着深度学习的发展&#xff0c;卷积神经网络&#xff08;CNN&#xff09;在图像识别方面取得了显著的成果。然而&#xff0c;随着网络深度的增加&#xff0c;出现了梯度消失或梯度爆炸等问题…