Linux 工作队列

news2025/1/10 7:08:09

在这里插入图片描述

系列文章目录


Linux内核学习
Linux 知识(1)
Linux 知识(2)
Linux 工作队列
Linux 内核源代码情景分析(一)
Linux 设备驱动程序(二)


文章目录

  • 系列文章目录
  • 综述
    • 工作(work_struct)
    • 工作队列(workqueue_struct)
    • 工作者(struct worker)
    • 工作线程池(struct worker_pool)
    • 线程池和工作队列关联(struct pool_workqueue)
  • 工作队列的初始化
    • init_workqueues
    • create_and_start_worker
    • worker_thread
    • process_scheduled_works
  • 工作队列的使用
    • 定义工作
      • 初始化
    • 调度
      • __queue_work
      • insert_work
      • schedule_work_on
      • 其他工作队列
      • 取消一个 work
      • 调度函数一览


综述

    作为 Linux 中断低半部的另一种实现机制的基础,工作队列的出现更多的是为了解决软中断和 Tasklet 对于用户进程的时间片的不良影响问题的。工作队列本身是可以使用内核线程来替代的,但是使用线程来实现复杂程度和内存资源的消耗是不利因素,所以 Linux 内核就实现了这一机制。通过内核线程(worker)作为工作队列的执行者,单个工作采用 struct work_struct 来进行描述,而一系列的工作采用 struct workqueue_struct 来描述,最后为了更好的管理 worker 又抽象出了工作线程池由 struct worker_pool 描述,最后再由线程池和工作队列关联器用 struct pool_workqueue 来描述来管理工作队列和线程池的关系。接下来逐一了解各个数据结构的定义和关系。

工作(work_struct)

// include/linux/workqueue_types.h
typedef void (*work_func_t)(struct work_struct *work);
struct work_struct {
	/*
	* 低比特位部分是 work 的标志位,剩余比特位通常用于存放上一次运行的
	* worker_pool ID 或 pool_workqueue 的指针。存放的内容有 WORK_STRUCT_PWQ 标志位来决定
	*/
	atomic_long_t data;
	// 用于把 work 挂到其他队列上
	struct list_head entry;
	// 工作任务的处理函数
	work_func_t func;
#ifdef CONFIG_LOCKDEP
	struct lockdep_map lockdep_map;
#endif
};

工作队列(workqueue_struct)

// kernel/workqueue.c
struct workqueue_struct {
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
	struct list_head	list;		/* PR: list of all workqueues */

	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
	// 所有 rescue 状态下的 pool_workqueue 数据结构链表
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
	/* rescue 内核线程,内存紧张时创建新的工作线程可能会失败,
    * 如果创建 workqueue 是设置了 WQ_MEM_RECLAIM,那么 rescuer 线程会接管这种情况
    */
	struct worker		*rescuer;	/* MD: rescue worker */

	int			nr_drainers;	/* WQ: drain in progress */

	/* See alloc_workqueue() function comment for info on min/max_active */
	int			max_active;	/* WO: max active works */
	int			min_active;	/* WO: min active works */
	int			saved_max_active; /* WQ: saved max_active */
	int			saved_min_active; /* WQ: saved min_active */

	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */

#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
#ifdef CONFIG_LOCKDEP
	char			*lock_name;
	struct lock_class_key	key;
	struct lockdep_map	__lockdep_map;
	struct lockdep_map	*lockdep_map;
#endif
	char			name[WQ_NAME_LEN]; /* I: workqueue name */

	/*
	 * Destruction of workqueue_struct is RCU protected to allow walking
	 * the workqueues list without grabbing wq_pool_mutex.
	 * This is used to dump all workqueues from sysrq.
	 */
	struct rcu_head		rcu;

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */
	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
};

工作者(struct worker)

// kernel/workqueue_internal.h
struct worker {
	/* on idle list while idle, on busy hash table while busy */
	union {
		struct list_head	entry;	/* L: while idle */
		struct hlist_node	hentry;	/* L: while busy */
	};

	struct work_struct	*current_work;	/* K: work being processed and its */
	work_func_t		current_func;	/* K: function */
	struct pool_workqueue	*current_pwq;	/* K: pwq */
	u64			current_at;	/* K: runtime at start or last wakeup */
	unsigned int		current_color;	/* K: color */

	int			sleeping;	/* S: is worker sleeping? */

	/* used by the scheduler to determine a worker's last known identity */
	work_func_t		last_func;	/* K: last work's fn */

	struct list_head	scheduled;	/* L: scheduled works */

	struct task_struct	*task;		/* I: worker task */
	struct worker_pool	*pool;		/* A: the associated pool */
						/* L: for rescuers */
	struct list_head	node;		/* A: anchored at pool->workers */
						/* A: runs through worker->node */

	unsigned long		last_active;	/* K: last active timestamp */
	unsigned int		flags;		/* L: flags */
	int			id;		/* I: worker id */

	/*
	 * Opaque string set with work_set_desc().  Printed out with task
	 * dump for debugging - WARN, BUG, panic or sysrq.
	 */
	char			desc[WORKER_DESC_LEN];

	/* used only by rescuers to point to the target workqueue */
	struct workqueue_struct	*rescue_wq;	/* I: the workqueue to rescue */
};

工作线程池(struct worker_pool)

// kernel/workqueue.c
/*
 * Structure fields follow one of the following exclusion rules.
 *
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
 *
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
 * L: pool->lock protected.  Access with pool->lock held.
 *
 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
 *     reads.
 *
 * K: Only modified by worker while holding pool->lock. Can be safely read by
 *    self, while holding pool->lock or from IRQ context if %current is the
 *    kworker.
 *
 * S: Only modified by worker self.
 *
 * A: wq_pool_attach_mutex protected.
 *
 * PL: wq_pool_mutex protected.
 *
 * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
 *
 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 *
 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 *      RCU for reads.
 *
 * WQ: wq->mutex protected.
 *
 * WR: wq->mutex protected for writes.  RCU protected for reads.
 *
 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
 *     with READ_ONCE() without locking.
 *
 * MD: wq_mayday_lock protected.
 *
 * WD: Used internally by the watchdog.
 */
struct worker_pool {
	raw_spinlock_t		lock;		/* the pool lock */
	int			cpu;		/* I: the associated cpu */
	int			node;		/* I: the associated node ID */
	int			id;		/* I: pool ID */
	unsigned int		flags;		/* L: flags */

	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
	bool			cpu_stall;	/* WD: stalled cpu bound pool */

	/*
	 * The counter is incremented in a process context on the associated CPU
	 * w/ preemption disabled, and decremented or reset in the same context
	 * but w/ pool->lock held. The readers grab pool->lock and are
	 * guaranteed to see if the counter reached zero.
	 */
	int			nr_running;

	struct list_head	worklist;	/* L: list of pending works */

	int			nr_workers;	/* L: total number of workers */
	int			nr_idle;	/* L: currently idle workers */

	struct list_head	idle_list;	/* L: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct work_struct      idle_cull_work; /* L: worker idle cleanup */

	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */

	/* a workers is either on busy_hash or idle_list, or the manager */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

	struct worker		*manager;	/* L: purely informational */
	struct list_head	workers;	/* A: attached workers */

	struct ida		worker_ida;	/* worker IDs for task name */

	struct workqueue_attrs	*attrs;		/* I: worker attributes */
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */

	/*
	 * Destruction of pool is RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
};

线程池和工作队列关联(struct pool_workqueue)

// kernel/workqueue.c

/*
 * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
 */
struct pool_workqueue {
	struct worker_pool	*pool;		/* I: the associated pool */
	struct workqueue_struct *wq;		/* I: the owning workqueue */
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			refcnt;		/* L: reference count */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
	bool			plugged;	/* L: execution suspended */

	/*
	 * nr_active management and WORK_STRUCT_INACTIVE:
	 *
	 * When pwq->nr_active >= max_active, new work item is queued to
	 * pwq->inactive_works instead of pool->worklist and marked with
	 * WORK_STRUCT_INACTIVE.
	 *
	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
	 * nr_active and all work items in pwq->inactive_works are marked with
	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
	 * in pwq->inactive_works. Some of them are ready to run in
	 * pool->worklist or worker->scheduled. Those work itmes are only struct
	 * wq_barrier which is used for flush_work() and should not participate
	 * in nr_active. For non-barrier work item, it is marked with
	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
	 */
	int			nr_active;	/* L: nr of active works */
	struct list_head	inactive_works;	/* L: inactive works */
	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
	struct list_head	mayday_node;	/* MD: node on wq->maydays */

	u64			stats[PWQ_NR_STATS];

	/*
	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
	 * and pwq_release_workfn() for details. pool_workqueue itself is also
	 * RCU protected so that the first pwq can be determined without
	 * grabbing wq->mutex.
	 */
	struct kthread_work	release_work;
	struct rcu_head		rcu;
} __aligned(1 << WORK_STRUCT_PWQ_SHIFT);

    前面了解了大致的数据结构关系后下来再来看工作队列的处理过程,因为数据结构的管理都是由内核完成的而驱动开发正真关系的的执行过程的细节。先从内核初始化线程和工作队列开始一步步深入。

工作队列的初始化

    在系统启动过程中通过 workqueue_init() 初始化了工作线程,并创建的一部分内核工作队列。创建的规则是每一个 CPU 核心创建两个线程一个高优先级(内核最高)一个低优先级(中间优先)的线程这些线程和 CPU 是绑定的,只处理指定 CPU 上的 pool_workqueue 。除此之外内核还创建了两个个和 CPU 无关的线程可以用来处理所有的工作。这里需要注意的是工作线程的创建也是根据激活在线的 CPU 的个数创建的而不是总的 CPU 的个数,所以在 CPU 激活的接口中会有回调接口用于创建内核工作线程,对应的在 CPU 休眠时就有对应的销毁回调。来看源码:

init_workqueues

// kernel/workqueue.c

static int __init init_workqueues(void)
{
    //NR_STD_WORKER_POOLS = 2 对应一个高优先级-20(最高)和一个低优先级0(中间)
    int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
    int i, cpu;

    WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

    pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
    //这里就是绑定在CPU激活和休眠的时候创建和销毁工作线程的接口
    cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
    hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);

    wq_numa_init();

    /* initialize CPU pools */
    //遍历每个CPU
    for_each_possible_cpu(cpu) {
        struct worker_pool *pool;

        i = 0;
        //这里会拿到CPU per 类型的工作线程池结构体地址(实际上是数组而CPU编号为index)到pool
        for_each_cpu_worker_pool(pool, cpu) {
            /*
                调用init_worker_pool 初始化工作线程程池,绑定CPU,设置优先级等
            */
            BUG_ON(init_worker_pool(pool));
            pool->cpu = cpu;
            cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
            pool->attrs->nice = std_nice[i++];
            pool->node = cpu_to_node(cpu);

            /* alloc pool ID */
            mutex_lock(&wq_pool_mutex);
            BUG_ON(worker_pool_assign_id(pool));
            mutex_unlock(&wq_pool_mutex);
        }
    }

    /* create the initial worker */
    //遍历激活的cpu
    for_each_online_cpu(cpu) {
        struct worker_pool *pool;
        //同上面一样遍历cpu per pool
        for_each_cpu_worker_pool(pool, cpu) {
            //创建线程在线程池中并启动工作线程、修改线程池标志
            pool->flags &= ~POOL_DISASSOCIATED;
            BUG_ON(create_and_start_worker(pool) < 0);
        }
    }
    //创建不绑定的线程属性并绑定
    /* create default unbound and ordered wq attrs */
    for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
        struct workqueue_attrs *attrs;

        BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
        attrs->nice = std_nice[i];
        unbound_std_wq_attrs[i] = attrs;

        /*
         * An ordered wq should have only one pwq as ordering is
         * guaranteed by max_active which is enforced by pwqs.
         * Turn off NUMA so that dfl_pwq is used for all nodes.
         */
        BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
        attrs->nice = std_nice[i];
        attrs->no_numa = true;
        ordered_wq_attrs[i] = attrs;
    }
    //创建内核工作队列
    system_wq = alloc_workqueue("events", 0, 0);
    system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
    system_long_wq = alloc_workqueue("events_long", 0, 0);
    system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
                        WQ_UNBOUND_MAX_ACTIVE);
    system_freezable_wq = alloc_workqueue("events_freezable",
                          WQ_FREEZABLE, 0);
    system_power_efficient_wq = alloc_workqueue("events_power_efficient",
                          WQ_POWER_EFFICIENT, 0);
    system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
                          WQ_FREEZABLE | WQ_POWER_EFFICIENT,
                          0);
    BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
           !system_unbound_wq || !system_freezable_wq ||
           !system_power_efficient_wq ||
           !system_freezable_power_efficient_wq);
    return 0;
}

create_and_start_worker

static int create_and_start_worker(struct worker_pool *pool)
{
    struct worker *worker;
    worker = create_worker(pool);
    if (worker) {
        spin_lock_irq(&pool->lock);
        start_worker(worker);
        spin_unlock_irq(&pool->lock);
    }

    return worker ? 0 : -ENOMEM;
}

static struct worker *create_worker(struct worker_pool *pool)
{
    struct worker *worker = NULL;
    int id = -1;
    char id_buf[16];

    /* ID is needed to determine kthread name */
    //从对应的pool中取线程id这体现了内核新的采用工作线程pool来管理工作线程的思想
    id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
    if (id < 0)
        goto fail;

    worker = alloc_worker();
    if (!worker)
        goto fail;
    //指定工作线程池和id
    worker->pool = pool;
    worker->id = id;
    //工作线程池中的cpu 指定绑定的cpu如果为-1则是不绑定CPU
    if (pool->cpu >= 0)
        snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
             pool->attrs->nice < 0  ? "H" : "");
    else
        snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
    //关键点:创建工作线程 线程函数为worker_thread ,工作线程还被挂接到pool上
    worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
                          "kworker/%s", id_buf);
    if (IS_ERR(worker->task))
        goto fail;
    //由此可见线程池中的线程的优先级和所属的线程池相同
    set_user_nice(worker->task, pool->attrs->nice);
    //这个标志阻碍用户接口修改当前线程优先级
    /* prevent userland from meddling with cpumask of workqueue workers */
    worker->task->flags |= PF_NO_SETAFFINITY;
    //链表操作将worker 串入worker_pool
    /* successful, attach the worker to the pool */
    worker_attach_to_pool(worker, pool);

    return worker;

fail:
    if (id >= 0)
        ida_simple_remove(&pool->worker_ida, id);
    kfree(worker);
    return NULL;
}

    这里也验证我前面的一个猜测,即一个worker_pool中的的worker线程的优先级都是继承自所属线程池的。启动线程的操作时内核的通用线程操作这里不在看,来重点蓝worker线程接口函数worker_thread。

worker_thread

static int worker_thread(void *__worker)
{
    struct worker *worker = __worker;
    struct worker_pool *pool = worker->pool;

    /* tell the scheduler that this is a workqueue worker */
    //告诉调度器这是一个worker 可见工作线程的支持是深入内核的
    worker->task->flags |= PF_WQ_WORKER;
woke_up:
    spin_lock_irq(&pool->lock);
    //worker 需要销毁?此时和他关联的线程已经销毁了(猜的找机会验证)
    /* am I supposed to die? */
    if (unlikely(worker->flags & WORKER_DIE)) {
        spin_unlock_irq(&pool->lock);
        WARN_ON_ONCE(!list_empty(&worker->entry));
        worker->task->flags &= ~PF_WQ_WORKER;

        set_task_comm(worker->task, "kworker/dying");
        ida_simple_remove(&pool->worker_ida, worker->id);
        worker_detach_from_pool(worker, pool);
        kfree(worker);
        return 0;
    }
    //清楚空闲标志,并从空闲线程链表上移到运行线程list上
    worker_leave_idle(worker);
recheck:
    /* no more worker necessary? */
    //如果当前worker_pool->worklist中没有待处理的任务,并且当前pool没有正在运行的worker这个接口返回False,这里就会休眠
    if (!need_more_worker(pool))
        goto sleep;
    //may_start_working()检查是否还有空闲状态worker,没有则通过 manage_workers()创建一个
    /* do we need to manage? */
    if (unlikely(!may_start_working(pool)) && manage_workers(worker))
        //返回再次检查
        goto recheck;

    /*
     * ->scheduled list can only be filled while a worker is
     * preparing to process a work or actually processing it.
     * Make sure nobody diddled with it while I was sleeping.
     */
     //scheduled 中保存着正在处理的work或即将处理的work(必然)
    WARN_ON_ONCE(!list_empty(&worker->scheduled));

    /*
     * Finish PREP stage.  We're guaranteed to have at least one idle
     * worker or that someone else has already assumed the manager
     * role.  This is where @worker starts participating in concurrency
     * management if applicable and concurrency management is restored
     * after being rebound.  See rebind_workers() for details.
     */
     //维护线程池属性 这里worker_pool->nr_running 计数维护
    worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
    //遍历线程池上的work,并处理
    do {
        struct work_struct *work =
            list_first_entry(&pool->worklist,
                     struct work_struct, entry);

        if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
            /* optimization path, not strictly necessary */
            //当前worker 处理当前work
            process_one_work(worker, work);
            if (unlikely(!list_empty(&worker->scheduled)))
                //如果当前worker上有待处理的work,先处理它(这是个补丁应该)
                process_scheduled_works(worker);
        } else {
            //如果当前work_struct置位WORK_STRUCT_LINKED表示work后面还串上其它work,
            //把这些work迁移到woeker_pool->scheduled中,然后一并再用process_one_work()函数处理。
            move_linked_works(work, &worker->scheduled, NULL);
            process_scheduled_works(worker);
        }
    } while (keep_working(pool));
    //处理完了
    worker_set_flags(worker, WORKER_PREP, false);
    //空闲睡眠处理
sleep:
    /*
     * pool->lock is held and there's no work to process and no need to
     * manage, sleep.  Workers are woken up only while holding
     * pool->lock or from local cpu, so setting the current state
     * before releasing pool->lock is enough to prevent losing any
     * event.
     */
    worker_enter_idle(worker);
    __set_current_state(TASK_INTERRUPTIBLE);
    spin_unlock_irq(&pool->lock);
    schedule();
    goto woke_up;
}

    然后就是具体的处理过程其实上面的process_scheduled_works()接口最后实际也是调用的process_one_work()接口进行处理的所以这里来看一下具体的处理过程:

process_scheduled_works

static void process_scheduled_works(struct worker *worker)
{
    while (!list_empty(&worker->scheduled)) {
        struct work_struct *work = list_first_entry(&worker->scheduled,
                        struct work_struct, entry);
        process_one_work(worker, work);
    }
}


static void process_one_work(struct worker *worker, struct work_struct *work)
__releases(&pool->lock)
__acquires(&pool->lock)
{
    struct pool_workqueue *pwq = get_work_pwq(work);
    struct worker_pool *pool = worker->pool;
    //判断当前的workqueue是否是CPU_INTENSIVE,会对其所在工作线程进行特殊设置。
    bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
    int work_color;
    struct worker *collision;
#ifdef CONFIG_LOCKDEP
    /*
     * It is permissible to free the struct work_struct from
     * inside the function that is called from it, this we need to
     * take into account for lockdep too.  To avoid bogus "held
     * lock freed" warnings as well as problems when looking into
     * work->lockdep_map, make a copy and use that here.
     */
    struct lockdep_map lockdep_map;

    lockdep_copy_map(&lockdep_map, &work->lockdep_map);
#endif
    /* ensure we're on the correct CPU */
    WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
             raw_smp_processor_id() != pool->cpu);

    /*
     * A single work shouldn't be executed concurrently by
     * multiple workers on a single cpu.  Check whether anyone is
     * already processing the work.  If so, defer the work to the
     * currently executing one.
     */
    //查询当前work是否在worker_pool->busy_hash表中正在运行,
    //如果在就移到当前work正在执行的worker->scheduled并退出当前处理。
    collision = find_worker_executing_work(pool, work);
    if (unlikely(collision)) {
        move_linked_works(work, &collision->scheduled, NULL);
        return;
    }

    /* claim and dequeue */
    debug_work_deactivate(work);
    hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
    worker->current_work = work;
    worker->current_func = work->func;
    worker->current_pwq = pwq;
    work_color = get_work_color(work);

    list_del_init(&work->entry);

    /*
     * CPU intensive works don't participate in concurrency management.
     * They're the scheduler's responsibility.  This takes @worker out
     * of concurrency management and the next code block will chain
     * execution of the pending work items.
     */
    if (unlikely(cpu_intensive))
        //设置当前工作线程flags,调度器就知道内核线程属性了,
        //但实际上调度器暂时并没有做特殊处理。
        worker_set_flags(worker, WORKER_CPU_INTENSIVE);

    /*
     * Wake up another worker if necessary.  The condition is always
     * false for normal per-cpu workers since nr_running would always
     * be >= 1 at this point.  This is used to chain execution of the
     * pending work items for WORKER_NOT_RUNNING workers such as the
     * UNBOUND and CPU_INTENSIVE ones.
     */
    //判断是否需要唤醒更多工作线程,wake_up_worker()去唤
    //醒worker_pool中第一个idle线程。对于bound型worker_pool此时一般nr_running>=1,所以条件不成立。
    if (need_more_worker(pool))
        wake_up_worker(pool);

    /*
     * Record the last pool and clear PENDING which should be the last
     * update to @work.  Also, do this inside @pool->lock so that
     * PENDING and queued state changes happen together while IRQ is
     * disabled.
     */
    //清除struct worker中data成员pending标志位,
    //里面使用了smp_wmb保证了pending之前的写操作完成之后才清除pending。
    set_work_pool_and_clear_pending(work, pool->id);

    spin_unlock_irq(&pool->lock);

    lock_map_acquire_read(&pwq->wq->lockdep_map);
    lock_map_acquire(&lockdep_map);
    trace_workqueue_execute_start(work);
    //真正执行work的回调函数
    worker->current_func(work);
    /*
     * While we must be careful to not use "work" after this, the trace
     * point will only record its address.
     */
    trace_workqueue_execute_end(work);
    lock_map_release(&lockdep_map);
    lock_map_release(&pwq->wq->lockdep_map);

    if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
        pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
               "     last function: %pf\n",
               current->comm, preempt_count(), task_pid_nr(current),
               worker->current_func);
        debug_show_held_locks(current);
        dump_stack();
    }

    /*
     * The following prevents a kworker from hogging CPU on !PREEMPT
     * kernels, where a requeueing work item waiting for something to
     * happen could deadlock with stop_machine as such work item could
     * indefinitely requeue itself while all other CPUs are trapped in
     * stop_machine. At the same time, report a quiescent RCU state so
     * the same condition doesn't freeze RCU.
     */
    cond_resched_rcu_qs();

    spin_lock_irq(&pool->lock);

    /* clear cpu intensive status */
    if (unlikely(cpu_intensive))
        worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

    /* we're done with it, release */
    //work回调函数执行完成后的清理工作
    hash_del(&worker->hentry);
    worker->current_work = NULL;
    worker->current_func = NULL;
    worker->current_pwq = NULL;
    worker->desc_valid = false;
    pwq_dec_nr_in_flight(pwq, work_color);
}

    处理过程除了涉及工作队列的数据维护外其余的需要注意的就是清除struct worker中data成员pending标志位的操作了,他可以说明工作队列调度一次执行一次处理就结束了。到这里其实关键的工作队列相关的处理的部分都算已经处理完了。其余剩余的CPU激活和睡眠的回调接口不再去看内容精炼一下,其次是工作队列的创建相关的内容暂时不用就不去看了看用不上就记不住 —— 徒劳。接下来重点看一下如何使用工作队列。

工作队列的使用

    工作队列的使用就三部曲,定义一个工作,初始化工作,调度他(其实是将其加入到内核的数据结构中由内核调度执行)。

定义工作

    可以使用动态分配的也可以使用静态方式定义,最后再调用 __INIT_WORK() 来初始化 work ,其次是衍生的一些其他接口,大多是标志位的不同,其次是 delay_work 这才是中断低半部常用的接口。

初始化

struct work_struct *work;
typedef void (*work_func_t)(struct work_struct *work);
work_func_t func;

INIT_WORK(work, func);

// include/linux/workqueue.h
#define INIT_WORK(_work, _func)						\
	__INIT_WORK((_work), (_func), 0)

#define __INIT_WORK(_work, _func, _onstack)                \
    do {                                \
        __init_work((_work), _onstack);                \
        (_work)->data = (atomic_long_t) WORK_DATA_INIT();    \
        INIT_LIST_HEAD(&(_work)->entry);            \
        (_work)->func = (_func);                \
    } while (0)

这里在将 work 封装的相关接口记录一下:

#define __INIT_WORK_KEY(_work, _func, _onstack, _key)			\
	do {								\
		__init_work((_work), _onstack);				\
		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
		INIT_LIST_HEAD(&(_work)->entry);			\
		(_work)->func = (_func);				\
	} while (0)
#endif

#define __INIT_WORK(_work, _func, _onstack)				\
	do {								\
		static __maybe_unused struct lock_class_key __key;	\
									\
		__INIT_WORK_KEY(_work, _func, _onstack, &__key);	\
	} while (0)

#define INIT_WORK(_work, _func)						\
	__INIT_WORK((_work), (_func), 0)

#define INIT_WORK_ONSTACK(_work, _func)					\
	__INIT_WORK((_work), (_func), 1)

#define INIT_WORK_ONSTACK_KEY(_work, _func, _key)			\
	__INIT_WORK_KEY((_work), (_func), 1, _key)

#define __INIT_DELAYED_WORK(_work, _func, _tflags)			\
	do {								\
		INIT_WORK(&(_work)->work, (_func));			\
		__init_timer(&(_work)->timer,				\
			     delayed_work_timer_fn,			\
			     (_tflags) | TIMER_IRQSAFE);		\
	} while (0)

#define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags)		\
	do {								\
		INIT_WORK_ONSTACK(&(_work)->work, (_func));		\
		__init_timer_on_stack(&(_work)->timer,			\
				      delayed_work_timer_fn,		\
				      (_tflags) | TIMER_IRQSAFE);	\
	} while (0)

#define INIT_DELAYED_WORK(_work, _func)					\
	__INIT_DELAYED_WORK(_work, _func, 0)

#define INIT_DELAYED_WORK_ONSTACK(_work, _func)				\
	__INIT_DELAYED_WORK_ONSTACK(_work, _func, 0)

#define INIT_DEFERRABLE_WORK(_work, _func)				\
	__INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE)

#define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func)			\
	__INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE)

#define INIT_RCU_WORK(_work, _func)					\
	INIT_WORK(&(_work)->work, (_func))

#define INIT_RCU_WORK_ONSTACK(_work, _func)				\
	INIT_WORK_ONSTACK(&(_work)->work, (_func))

/**
 * work_pending - Find out whether a work item is currently pending
 * @work: The work item in question
 */
#define work_pending(work) \
	test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))

/**
 * delayed_work_pending - Find out whether a delayable work item is currently
 * pending
 * @w: The work item in question
 */
#define delayed_work_pending(w) \
	work_pending(&(w)->work)

调度

    work_struct 初始化完成后就需要将 work_struct 加入到工作队列中去了,而默认的工作队列是 system_wq ,回想初始化过程创建的工作队列。调用的接口是 schedule_work() 如下的调用过程:

// include/linux/workqueue.h

/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
 */
static inline bool schedule_work(struct work_struct *work)
{
    return queue_work(system_wq, work);
}

/**
 * queue_work - queue work on a workqueue
 * @wq: workqueue to use
 * @work: work to queue
 *
 * Returns %false if @work was already on a queue, %true otherwise.
 *
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
 */
static inline bool queue_work(struct workqueue_struct *wq,
                  struct work_struct *work)
{
    return queue_work_on(WORK_CPU_UNBOUND, wq, work);
}

/**
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @work: work to queue
 *
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
 *
 * Return: %false if @work was already on a queue, %true otherwise.
 */
bool queue_work_on(int cpu, struct workqueue_struct *wq,
           struct work_struct *work)
{
    bool ret = false;
    unsigned long flags;

    local_irq_save(flags);

    if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
        __queue_work(cpu, wq, work);
        ret = true;
    }

    local_irq_restore(flags);
    return ret;
}

// -------------------------------------------------------------------------

/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
 */
static inline bool queue_delayed_work(struct workqueue_struct *wq,
				      struct delayed_work *dwork,
				      unsigned long delay)
{
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
static inline bool mod_delayed_work(struct workqueue_struct *wq,
				    struct delayed_work *dwork,
				    unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}

/**
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
static inline bool schedule_work_on(int cpu, struct work_struct *work)
{
	return queue_work_on(cpu, system_wq, work);
}

/**
 * enable_and_queue_work - Enable and queue a work item on a specific workqueue
 * @wq: The target workqueue
 * @work: The work item to be enabled and queued
 *
 * This function combines the operations of enable_work() and queue_work(),
 * providing a convenient way to enable and queue a work item in a single call.
 * It invokes enable_work() on @work and then queues it if the disable depth
 * reached 0. Returns %true if the disable depth reached 0 and @work is queued,
 * and %false otherwise.
 *
 * Note that @work is always queued when disable depth reaches zero. If the
 * desired behavior is queueing only if certain events took place while @work is
 * disabled, the user should implement the necessary state tracking and perform
 * explicit conditional queueing after enable_work().
 */
static inline bool enable_and_queue_work(struct workqueue_struct *wq,
					 struct work_struct *work)
{
	if (enable_work(work)) {
		queue_work(wq, work);
		return true;
	}
	return false;
}

由这个过程可以知道,这个接口添加的工作队列是不指定具体的CPU执行的,其中的 __queue_work()是重要的添加操作过程:

__queue_work

static void __queue_work(int cpu, struct workqueue_struct *wq,
             struct work_struct *work)
{
    struct pool_workqueue *pwq;
    struct worker_pool *last_pool;
    struct list_head *worklist;
    unsigned int work_flags;
    unsigned int req_cpu = cpu;
    //是否处于关中断状态
    WARN_ON_ONCE(!irqs_disabled());

    debug_work_activate(work);
    /*
        __WQ_DRAINING表示要销毁workqueue,那么挂入workqueue中所有的work都要处理完
        毕才能把这个workqueue销毁。在销毁过程中,一般不允许再有新的work加入队列中。
        有一种特殊例外是正在清空work时触发了一个queue work操作,这种情况被称为chained work。
    */
    /* if draining, only works from the same workqueue are allowed */
    if (unlikely(wq->flags & __WQ_DRAINING) &&
        WARN_ON_ONCE(!is_chained_work(wq)))
        return;
retry:
    if (req_cpu == WORK_CPU_UNBOUND)
        cpu = raw_smp_processor_id();

    /* pwq which will be used unless @work is executing elsewhere */
    if (!(wq->flags & WQ_UNBOUND))
        //对于bound型的workqueue,直接使用本地CPU对应pool_workqueue。
        pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
    else
        //对于unbound型,调用unbound_pwq_by_node()寻找本地node节点对应的unbound类型的pool_workqueue。
        pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));

    /*
     * If @work was previously on a different pool, it might still be
     * running there, in which case the work needs to be queued on that
     * pool to guarantee non-reentrancy.
     */
     //通过work_struct的成员data查询该work上一次是在哪个worker_pool中运行的。
    last_pool = get_work_pool(work);
    //如果上次运行的worker_pool和本次不一致
    if (last_pool && last_pool != pwq->pool) {
        struct worker *worker;

        spin_lock(&last_pool->lock);
        //判断一个work是否正在last_pool上运行,也即不在当前worker_pool运行,如果是返回这个正在执行的工作线程worker
        worker = find_worker_executing_work(last_pool, work);

        if (worker && worker->current_pwq->wq == wq) {
            //利用当前work正在执行的pool_workqueue,利用缓存热度,不进行调度。
            pwq = worker->current_pwq;
        } else {
            /* meh... not running there, queue here */
            spin_unlock(&last_pool->lock);
            spin_lock(&pwq->pool->lock);
        }
    } else {
        spin_lock(&pwq->pool->lock);
    }

    if (unlikely(!pwq->refcnt)) {
        //对unbound类型pool_workqueue释放是异步的,当refcnt减少到0时,
        //说明该pool_workqueue已经被释放,那么需要跳转到retry出重新选择pool_workqueue。
        if (wq->flags & WQ_UNBOUND) {
            spin_unlock(&pwq->pool->lock);
            cpu_relax();
            goto retry;
        }
        /* oops */
        WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
              wq->name, cpu);
    }

    /* pwq determined, queue */
    trace_workqueue_queue_work(req_cpu, pwq, work);

    if (WARN_ON(!list_empty(&work->entry))) {
        spin_unlock(&pwq->pool->lock);
        return;
    }

    pwq->nr_in_flight[pwq->work_color]++;
    work_flags = work_color_to_flags(pwq->work_color);

    if (likely(pwq->nr_active < pwq->max_active)) {
        //判断当前pool_workqueue的work活跃数量,如果少于最高限值,
        //就加入pending状态链表worker_pool->worklist,否则加入delayed_works链表中。
        trace_workqueue_activate_work(work);
        pwq->nr_active++;
        worklist = &pwq->pool->worklist;
    } else {
        work_flags |= WORK_STRUCT_DELAYED;
        worklist = &pwq->delayed_works;
    }
    //将当前work加入到pool_workqueue->worklist尾部。
    insert_work(pwq, work, worklist, work_flags);

    spin_unlock(&pwq->pool->lock);
}

    在关中断的情况下将 work 通过 insert_work 添加到对应的 work_queue 中。在添加的过程最后会检查当前的线程池中是否有工作的线程即线程池有活动的线程,因为只有线程池中有活动的线程才能回执行 worker 线程处理函数,进而发现有待处理的 work 进行执行处理。所以如果没有任何 worker 在运行则需要唤醒一个线程采用 wake_up_worker(pool) 接口。这个接口的执行也十分简单就是进入线程池找到第一个空闲的 worker 然后执行线程唤醒接口 wake_up_process(task_struct) 唤醒这个线程即可。

insert_work

/**
 * insert_work - insert a work into a pool
 * @pwq: pwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
 * work_struct flags.
 *
 * CONTEXT:
 * raw_spin_lock_irq(pool->lock).
 */
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
{
    struct worker_pool *pool = pwq->pool;

    /* we own @work, set data and link */
    //把 pool_workqueue 指针的值和一些 flag 设置到 data 成员中,
    //方便下次调用 queue_work() 知道本次使用哪个 pool_workqueue() 。
    set_work_pwq(work, pwq, extra_flags);
    //将work加入到worker_pool->worklist尾部。
    list_add_tail(&work->entry, head);
    //增加pool_workqueue->refcnt成员引用计数。
    get_pwq(pwq);

    /*
     * Ensure either wq_worker_sleeping() sees the above
     * list_add_tail() or we see zero nr_running to avoid workers lying
     * around lazily while there are works to be processed.
     */
    //保证wake_up_worker()唤醒worker时,在__schedule()->wq_worker_sleeping()时
    //这里的list_add_tail()已经完成。同时保证下面__need_more_worker()读取nr_running时链表已经完成。
    smp_mb();

    //如果当前nr_running为0,表示当前worker可能并没有处于运行状态需要唤醒一个工作线程。
    if (__need_more_worker(pool))	// 那么需要wake_up_worker()
        wake_up_worker(pool);
}

除了以上的接口还有其他的接口可以控制work的添加

schedule_work_on

//指定执行处理的CPU
int schedule_work_on(int cpu, struct work_struct *work)
{
    return queue_work_on(cpu, system_wq, work);
}
//延迟执行这个work,一般作为中断低半部处理机制使用在中断上下文调用而在进程上下文处理
int schedule_delayed_work(struct delayed_work *dwork,
                    unsigned long delay)
{
    return queue_delayed_work(system_wq, dwork, delay);
}
//指定在那个cpu上延迟处理,上面的结合体
int schedule_delayed_work_on(int cpu,
            struct delayed_work *dwork, unsigned long delay)
{
    return queue_delayed_work_on(cpu, system_wq, dwork, delay);
}

    schedule_work() 接口最后默认是将工作加了到 system_wq,上面的这些接口支持将工作队列加到别的工作队列上进行处理,所以这里在了解一下其他的工作队列如下。

其他工作队列

  1. schedule_work(),其默认将 work 放入 system_wq 上。系统还有其它很多默认 workqueue,这些 workqueue 也都是通过 queue_work() 将 work 放入其上。下面介绍一些其它系统全局 workqueue 的使用。
  2. system_highpri_wq 和 system_wq 的区别在于 WQ_HIGHPRI,这些 work 对应的工作线程位于 cpu_worker_pool[1] 中。工作线程的 nice 为 -20,要比 system_wq 对应的工作线程优先级要高。
  3. system_long_wq 和 system_wq 类似,但是一般 system_long_wq 用于执行时间较长的 work ,而 system_wq 放执行较短的 work 。这两个 workqueue 没有明显的区别,更多的是靠使用者自觉。
  4. system_nrt_wq 相对于 system_wq 使用了 WQ_NON_REENTRANT 。默认情况下工作队列只是确保在同一 CPU 不可重入,即工作在同一 CPU 上不会被多个工作线程并发执行,但容许在多个 CPU 上并发执行。该标志表明在多个 CPU 上也是不可重入的,工作将在不可重入 workqueue 上,并确保至多在一个系统范围内的工作线程上执行。
  5. system_unbound_wq 相对于 system_wq 的区别是被设置为 WQ_UNBOUND,没有并发管理,且 work 最大活跃数不超过 WQ_UNBOUND_MAX_ACTIVE ,一般为 WQ_MAX_ACTIVE=512 。system_unbound_wq 对应的工作线程不会被绑定到特定 CPU,所有排队的 work 会被立即执行,只要资源足够并且不超过最大活跃数。
  6. system_freezable_wq 相对于 system_wq 多了 WQ_FREEZABLE 标志,表示可以冻结 workqueue 参与系统的暂停操作,该 workqueue 的工作将被暂停,除非被唤醒,否则没有新的 work 被执行。
  7. system_power_efficient_wq 相对于 system_wq 多了 WQ_POWER_EFFICIENT 标志,将工作队列表示为 unbound 已达到节省功耗的目的,并且还需要 wq_power_efficient 打开。否则和 system_wq 没啥区别。
  8. system_freezable_power_efficient_wq 兼具 system_freezable_wq 的 freezable 和 system_power_efficient_wq 的 power efficient 两个特性。

    在有些时候还可能需要自己创建工作队列来完成自己的 work 的调度使用,此时会使用创建工作队列的接口相关的内容,这里暂时记录不去深究后续用到了再来完善。

取消一个 work

   work 添加到工作队列后会被执行,但有时也需要取消比如驱动程序在关闭设备节点,出现错误,或者要挂起时,需要取消一个已经被调度的 work。cancel_work_sync() 函数取消一个已经调度的 work,该函数的工作流程图如下。

在这里插入图片描述

    以上就是 Linux 内核工作队列的相关流程和处理过车梳理,不是全部但是可以对工作队列的工作特性骨架有一定的了解。

调度函数一览

bool queue_work(struct workqueue_struct *wq, struct work_struct *work);
bool queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
				      unsigned long delay);
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
				    unsigned long delay);
bool schedule_work_on(int cpu, struct work_struct *work);
bool schedule_work(struct work_struct *work);
bool enable_and_queue_work(struct workqueue_struct *wq, struct work_struct *work);

Linux 工作队列


   
 

Ctrl + Alt + V

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2274209.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计算机的错误计算(二百零六)

摘要 电脑准备关机时&#xff0c;看到不知什么时候触发跳出了一个**AI助手页面。里面有关于等价的讨论内容&#xff0c;特记录&#xff0c;以警世人&#xff1a;大模型犯错&#xff0c;不是个别现象。 例1. 下面是对话。问题是&#xff1a; 和 等价吗&#xff1f;在 (0, ) …

支持向量回归(SVR:Support Vector Regression)用于A股数据分析、预测

简单说明 支持向量回归是一种用来做预测的数学方法,属于「机器学习」的一种。 它的目标是找到一条「最合适的线」,能够大致描述数据点的趋势,并允许数据点离这条线有一定的误差(不要求所有点都完全落在这条线上)。 可以把它想象成:找到一条「宽带」或「隧道」,大部分…

web作业

作业一 <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta name"viewport" content"widthdevice-width, initial-scale1.0"> <title>Document</title> </head&g…

(六)ROS通讯机制——常用命令

前言 下面这些主要是一些通讯中经常用到的一些命令&#xff0c;大家需要跟着下面的指示操作一遍&#xff0c;有个大致的了解即可。 1.学习目的 机器人系统中启动的节点少则几个&#xff0c;多则十几个、几十个&#xff0c;不同的节点名称各异&#xff0c;通信时使用话题、服…

掌握正则表达式:从入门到精通的实战指南

文章目录 &#x1f30d;一.正则表达式❄️1.为什么学习正则表达式❄️ 2.基本介绍❄️3.分析底层实现 &#x1f30d;二.正则表达式的语法❄️1.字符匹配❄️2.量词❄️3.定位符4.分组和引用❄️6.非贪婪匹配❄️7.分支结构❄️实际应用 &#x1f30d; 三.正则标表达式的三个常用…

【Linux 之一 】Linux常用命令汇总

Linux常用命令 ./catcd 命令chmodclearcphistoryhtoplnmkdirmvpwdrmtailunamewcwhoami 我从2021年4月份开始才开始真正意义上接触Linux&#xff0c;最初学习时是一脸蒙圈&#xff0c;啥也不会&#xff0c;啥也不懂&#xff0c;做了很多乱七八糟&#xff0c;没有条理的笔记。不知…

AI赋能R-Meta分析核心技术:从热点挖掘到高级模型、助力高效科研与论文发表

Meta分析是针对某一科研问题&#xff0c;根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法&#xff0c;对来源不同的研究成果进行收集、合并及定量统计分析的方法&#xff0c;现已广泛应用于农林生态&#xff0c;资源环境等方面&#xff0c;成为Science、Nature论文的…

用 Python 绘制可爱的招财猫

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​​​​​ ​​​​​​​​​ ​​​​ 招财猫&#xff0c;也被称为“幸运猫”&#xff0c;是一种象征财富和好运的吉祥物&#xff0c;经常…

【Linux】Linux常见指令(上)

个人主页~ 初识Linux 一、Linux基本命令1、ls指令2、pwd命令3、cd指令4、touch指令5、mkdir指令6、rmdir指令7、rm指令8、man指令9、cp指令10、mv命令 Linux是一个开源的、稳定的、安全的、灵活的操作系统&#xff0c;Linux下的操作都是通过指令来实现的 一、Linux基本命令 先…

AI是IT行业的变革力量,还是“职业终结者”?

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 AI是…

mapbox进阶,卷帘对比

👨‍⚕️ 主页: gis分享者 👨‍⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍⚕️ 收录于专栏:mapbox 从入门到精通 文章目录 一、🍀前言1.1 ☘️mapboxgl.Map 地图对象1.2 ☘️mapboxgl.Map style属性1.3 ☘️mapbox-gl-compare 卷帘对比控件二、�…

【开源免费】基于SpringBoot+Vue.JS企业资产管理系统(JAVA毕业设计)

本文项目编号 T 124 &#xff0c;文末自助获取源码 \color{red}{T124&#xff0c;文末自助获取源码} T124&#xff0c;文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…

Linux环境中对Postgrel数据库的安装与配置

一、环境准备 linux操作系统的环境是centos7; Postgrel数据库的版本是12.0&#xff0c;不同版本的下载渠道如下&#xff08;PostgreSQL: File Browser&#xff09;&#xff1a; 可以看到压缩包是比较小的&#xff1b;下载之后&#xff0c;上传到你的linux环境中即可。 二、…

《零基础Go语言算法实战》【题目 1-11】格式化字符串

《零基础Go语言算法实战》 【题目 1-11】格式化字符串 在 Go 语言中&#xff0c;找到使用变量格式化字符串而不打印值的简单方法。 【解答】 在 Go 语言中&#xff0c;在不打印值的情况下进行格式化的最简单方法是使用 fmt.Sprintf() 函数&#xff0c; 它返回一个格式化的…

【机器视觉】OpenCV 图像轮廓(查找/绘制轮廓、轮廓面积/周长、多边形逼近与凸包、外接矩形)

OpenCV官网 7. 图像轮廓 7.1 什么是图像轮廓 图像轮廓是具有相同颜色或灰度的连续点的曲线. 轮廓在形状分析和物体的检测和识别中很有用。 轮廓的作用: 用于图形分析物体的识别和检测 注意点: 为了检测的准确性&#xff0c;需要先对图像进行二值化或Canny操作。画轮廓时…

Elasticsearch:使用 Playground 与你的 PDF 聊天

LLMs作者&#xff1a;来自 Elastic Toms Mura 了解如何将 PDF 文件上传到 Kibana 并使用 Elastic Playground 与它们交互。本博客展示了在 Playground 中与 PDF 聊天的实用示例。 Elasticsearch 8.16 具有一项新功能&#xff0c;可让你将 PDF 文件直接上传到 Kibana 并使用 Pla…

RabbitMQ 在 Spring Boot 项目中的深度应用与实战解析

RabbitMQ 在 Spring Boot 项目中的深度应用与实战解析 引言 RabbitMQ 作为一款广受欢迎的开源消息队列系统&#xff0c;遵循 AMQP 协议&#xff0c;能够在分布式系统里实现应用程序之间的异步通信、解耦以及流量削峰等关键功能。在 Spring Boot 项目中集成 RabbitMQ&#xff…

简述视觉语言模型(Vision-Language Models, VLMs)

目录 1. 引言 2. 视觉语言模型的基本概念 什么是视觉语言模型 视觉语言模型的工作原理 3. 视觉语言模型的架构 双流神经网络结构 多模态对齐机制 跨模态注意力机制 统一架构&#xff1a;视觉-语言一体化模型 4. 视觉语言模型的关键技术 图像表示学习 文本表示学习 …

分治算法——优选算法

本章我们要学习的是分治算法&#xff0c;顾名思义就是分而治之&#xff0c;把大问题分为多个相同的子问题进行处理&#xff0c;其中我们熟知的快速排序和归并排序用的就是分治算法&#xff0c;所以我们需要重新回顾一下这两个排序。 一、快速排序&#xff08;三路划分&#xf…