【机器视觉】OpenCV 图像轮廓(查找/绘制轮廓、轮廓面积/周长、多边形逼近与凸包、外接矩形)

news2025/1/10 6:20:17

OpenCV官网

7. 图像轮廓

7.1 什么是图像轮廓

图像轮廓是具有相同颜色或灰度的连续点的曲线. 轮廓在形状分析和物体的检测和识别中很有用。

轮廓的作用:

  • 用于图形分析
  • 物体的识别和检测

注意点:

  • 为了检测的准确性,需要先对图像进行二值化Canny操作
  • 画轮廓时会修改输入的图像, 如果之后想继续使用原始图像,应该将原始图像储存到其他变量中。

7.2 查找轮廓

  • findContours(image, mode, method[, contours[, hierarchy[, offset]]])

    • mode 查找轮廓的模式

      • RETR_EXTERNAL = 0, 表示只检测外围轮廓

        在这里插入图片描述

      • RETR_LIST = 1, 检测的轮廓不建立等级关系, 即检测所有轮廓, 较为常用

      在这里插入图片描述

      • RETR_CCOMP = 2, 每层最多两级, 从小到大, 从里到外.

      在这里插入图片描述

      • RETR_TREE = 3, 按照树型存储轮廓, 从大到小, 从右到左.
    • method 轮廓近似方法也叫ApproximationMode

      • CHAIN_APPROX_NONE 保存所有轮廓上的点
      • CHAIN_APPROX_SIMPLE, 只保存角点, 比如四边形, 只保留四边形的4个角, 存储信息少, 比较常用
    • 返回 contours和hierachy 即轮廓和层级

import cv2
import numpy as np

# 该图像显示效果是黑白的, 但是实际上却是3个通道的彩色图像.
img = cv2.imread('./contours1.jpeg')

# 变成单通道的黑白图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化, 注意有2个返回值, 阈值和结果
ret, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)

# cv2.imshow('img', img)
# cv2.imshow('binary', binary)

# 轮廓查找, 新版本返回两个结果, 轮廓和层级, 老版本返回3个参数, 图像, 轮廓和层级
result, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 打印轮廓
print(contours)
cv2.waitKey(0)
cv2.destroyAllWindows()

7.3 绘制轮廓

  • drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]])
    • image 要绘制的轮廓图像
    • contours轮廓点
    • contourIdx 要绘制的轮廓的编号. -1 表示绘制所有轮廓
    • color 轮廓的颜色, 如 (0, 0, 255)表示红色
    • thickness线宽, -1 表示全部填充
import cv2
import numpy as np

# 该图像显示效果是黑白的, 但是实际上却是3个通道的彩色图像.
img = cv2.imread('./contours1.jpeg')

# 变成单通道的黑白图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化, 注意有2个返回值, 阈值和结果
ret, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)


# 轮廓查找, 新版本返回两个结果, 轮廓和层级, 老版本返回3个参数, 图像, 轮廓和层级
result, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 绘制轮廓, 注意, 绘制轮廓会改变原图
cv2.drawContours(img, contours, 1, (0, 0, 255), 2)

cv2.imshow('img', img)

cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

7.4 轮廓的面积和周长

轮廓面积是指每个轮廓中所有的像素点围成区域的面积,单位为像素。

轮廓面积是轮廓重要的统计特性之一,通过轮廓面积的大小可以进一步分析每个轮廓隐含的信息,例如通过轮廓面积区分物体大小识别不同的物体。

在查找到轮廓后, 可能会有很多细小的轮廓, 我们可以通过轮廓的面积进行过滤.

  • contourArea(contour)
  • arcLength(curve, closed)
    • curve即轮廓
    • closed是否是闭合的轮廓
import cv2
import numpy as np

# 该图像显示效果是黑白的, 但是实际上却是3个通道的彩色图像.
img = cv2.imread('./contours1.jpeg')

# 变成单通道的黑白图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化, 注意有2个返回值, 阈值和结果
ret, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)


# 轮廓查找, 新版本返回两个结果, 轮廓和层级, 老版本返回3个参数, 图像, 轮廓和层级
result, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 绘制轮廓, 注意, 绘制轮廓会改变原图
cv2.drawContours(img, contours, 1, (0, 0, 255), 2)

# 计算面积
area = cv2.contourArea(contours[1])
print('area: ', area)
cv2.imshow('img', img)

# 计算周长
perimeter = cv2.arcLength(contours[1], True)
print('perimeter:', perimeter)

cv2.waitKey(0)
cv2.destroyAllWindows()

7.5 多边形逼近与凸包

findContours后的轮廓信息contours可能过于复杂不平滑,可以用approxPolyDP函数对该多边形曲线做适当近似,这就是轮廓的多边形逼近.

apporxPolyDP就是以多边形去逼近轮廓,采用的是Douglas-Peucker算法(方法名中的DP)

DP算法原理比较简单,核心就是不断找多边形最远的点加入形成新的多边形,直到最短距离小于指定的精度。

  • approxPolyDP(curve, epsilon, closed[, approxCurve])
    • curve 要近似逼近的轮廓
    • epsilon 即DP算法使用的阈值
    • closed轮廓是否闭合
import cv2
import numpy as np


img = cv2.imread('./hand.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化, 注意有2个返回值, 阈值和结果
ret, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)


# 轮廓查找, 新版本返回两个结果, 轮廓和层级, 老版本返回3个参数, 图像, 轮廓和层级
result, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 绘制轮廓, 注意, 绘制轮廓会改变原图
cv2.drawContours(img, contours, 0, (0, 0, 255), 2)
# 展示没有进行多边形逼近之前的轮廓


# 进行多边形逼近, 返回的是多边形上一系列的点, 即多边形逼近之后的轮廓
approx = cv2.approxPolyDP(contours[0], 20, True)
# print(type(approx))
# print(approx)
# print('--------------------------------------')
# print(contours[0])

# 把多边形逼近的轮廓画出来.
cv2.drawContours(img, [approx], 0, (0, 255, 0), 2)
cv2.imshow('img', img)

cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

逼近多边形是轮廓的高度近似,但是有时候,我们希望使用一个多边形的凸包来简化它。凸包跟逼近多边形很像,只不过它是物体最外层的凸多边形。凸包指的是完全包含原有轮廓,并且仅由轮廓上的点所构成的多边形。凸包的每一处都是凸的,即在凸包内连接任意两点的直线都在凸包的内部。在凸包内,任意连续三个点的内角小于180°。

  • convexHull(points[, hull[, clockwise[, returnPoints]]])
    • points 即轮廓
    • colckwise 顺时针绘制
import cv2
import numpy as np


img = cv2.imread('./hand.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化, 注意有2个返回值, 阈值和结果
ret, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)


# 轮廓查找, 新版本返回两个结果, 轮廓和层级, 老版本返回3个参数, 图像, 轮廓和层级
result, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 绘制轮廓, 注意, 绘制轮廓会改变原图
cv2.drawContours(img, contours, 0, (0, 0, 255), 2)


# 进行多边形逼近, 返回的是多边形上一系列的点, 即多边形逼近之后的轮廓
approx = cv2.approxPolyDP(contours[0], 20, True)

# 把多边形逼近的轮廓画出来.
cv2.drawContours(img, [approx], 0, (0, 255, 0), 2)


# 计算凸包
hull = cv2.convexHull(contours[0])
cv2.drawContours(img, [hull], 0, (255, 0, 0), 2)

cv2.imshow('img', img)

cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

7.6 外接矩形

外接矩形分为最小外接矩形和最大外接矩形.

下图中红色矩形是最小外接矩形, 绿色矩形为最大外接矩形.

  • minAreaRect(points) 最小外接矩阵

    • points 即为轮廓
    • 返回元组, 内容是一个旋转矩形(RotatedRect)的参数: 矩形的起始坐标x,y, 矩形的宽度和高度, 矩形的选择角度.
  • boundingRect(points) 最大外接矩阵

    • points 即为轮廓
import cv2
import numpy as np


img = cv2.imread('./hello.jpeg')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)

result, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 最外面的轮廓是整个图像, contours[1]表示图像里面的图形轮廓
# 注意返回的内容是一个旋转的矩形, 包含矩形的起始坐标, 宽高和选择角度
(x, y), (w, h), angle = cv2.minAreaRect(contours[1])

print(x, y)
print(w, h)
print(angle)
r = cv2.minAreaRect(contours[1])

# 快速把rotatedrect转化为轮廓数据
box = cv2.boxPoints(r)
print(box)
# 轮廓必须是整数, 不能是小数, 所以转化为整数
box = np.round(box).astype('int64')
print(box)
# 绘制最小外接矩形
cv2.drawContours(img, [box], 0, (255, 0, 0), 2)

# 返回矩形的x,y和w,h
x,y, w, h = cv2.boundingRect(contours[1])
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2274184.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Elasticsearch:使用 Playground 与你的 PDF 聊天

LLMs作者:来自 Elastic Toms Mura 了解如何将 PDF 文件上传到 Kibana 并使用 Elastic Playground 与它们交互。本博客展示了在 Playground 中与 PDF 聊天的实用示例。 Elasticsearch 8.16 具有一项新功能,可让你将 PDF 文件直接上传到 Kibana 并使用 Pla…

RabbitMQ 在 Spring Boot 项目中的深度应用与实战解析

RabbitMQ 在 Spring Boot 项目中的深度应用与实战解析 引言 RabbitMQ 作为一款广受欢迎的开源消息队列系统,遵循 AMQP 协议,能够在分布式系统里实现应用程序之间的异步通信、解耦以及流量削峰等关键功能。在 Spring Boot 项目中集成 RabbitMQ&#xff…

简述视觉语言模型(Vision-Language Models, VLMs)

目录 1. 引言 2. 视觉语言模型的基本概念 什么是视觉语言模型 视觉语言模型的工作原理 3. 视觉语言模型的架构 双流神经网络结构 多模态对齐机制 跨模态注意力机制 统一架构:视觉-语言一体化模型 4. 视觉语言模型的关键技术 图像表示学习 文本表示学习 …

分治算法——优选算法

本章我们要学习的是分治算法,顾名思义就是分而治之,把大问题分为多个相同的子问题进行处理,其中我们熟知的快速排序和归并排序用的就是分治算法,所以我们需要重新回顾一下这两个排序。 一、快速排序(三路划分&#xf…

迎接2025Power BI日期表创建指南:模板与最佳实践

故事背景 最近,我们收到了一些关于时间表更新的询问。询问的朋友发现,随着2025年的到来,2024年的日期表已不再适用。这是一个在数据分析领域常见的问题,每年都需要对日期表进行更新。 解决方案 鉴于创建和更新日期表是一项年度…

Trilium Notes中文版本地Docker部署与远程访问打造个人云知识库

文章目录 前言1. 安装docker与docker-compose2. 启动容器运行镜像3. 本地访问测试4.安装内网穿透5. 创建公网地址6. 创建固定公网地址 前言 今天和大家分享一款在G站获得了26K的强大的开源在线协作笔记软件,Trilium Notes的中文版如何在Linux环境使用docker本地部署…

【读书与思考】历史是一个好东西

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】【读书与思考】 导言 以后《AI日记》专栏我想专注于 AI 相关的学习、成长和工作等。而与 AI 无关的一些读书、思考和闲聊,我打算写到这里,我会尽量控制自己少想和少写。 下图的一些感想…

CSS——26. 伪元素2(“::before ,::after”)

::before伪类 <!DOCTYPE html> <html><head><meta charset"UTF-8"><title>伪元素</title><style type"text/css">div::before{content: "我最棒";}}</style></head><body><!--…

在macOS上安装MySQL

macOS的MySQL有多种不同的形式&#xff1a; 1、本机包安装程序&#xff0c;它使用本机macOS安装程序&#xff08;DMG&#xff09;引导您完成MySQL的安装。有关详细信息&#xff0c;请参阅第2.4.2节&#xff0c;“使用本机包在macOS上安装MySQL”。您可以将包安装程序与macOS一…

计算机网络 (32)用户数据报协议UDP

前言 用户数据报协议&#xff08;UDP&#xff0c;User Datagram Protocol&#xff09;是计算机网络中的一种重要传输层协议&#xff0c;它提供了无连接的、不可靠的、面向报文的通信服务。 一、基本概念 UDP协议位于传输层&#xff0c;介于应用层和网络层之间。它不像TCP那样提…

易支付二次元网站源码及部署教程

易支付二次元网站源码及部署教程 引言 在当今数字化时代&#xff0c;二次元文化逐渐成为年轻人生活中不可或缺的一部分。为了满足这一庞大用户群体的需求&#xff0c;搭建一个二次元主题网站显得尤为重要。本文将为您详细介绍易支付二次元网站源码的特点及其部署教程&#xf…

汽车扶手屏里的FPC应用有哪些?【新立电子】

汽车扶手屏作为现代汽车内饰设计的一大亮点&#xff0c;通常被安装在座椅扶手位置&#xff0c;其设计初衷是为了方便乘客在乘车过程中进行各种操作和控制。屏幕不仅具备触控功能&#xff0c;还支持语音控制、手势识别等多种交互方式&#xff0c;使得乘客可以更加轻松、直观地操…

初学stm32 --- DMA直接存储器

目录 DMA介绍 STM32F1 DMA框图 DMA处理过程 DMA通道 DMA优先级 DMA相关寄存器介绍 F1 DMA通道x配置寄存器&#xff08;DMA_CCRx&#xff09; DMA中断状态寄存器&#xff08;DMA_ISR&#xff09; DMA中断标志清除寄存器&#xff08;DMA_IFCR&#xff09; DMA通道x传输…

MT6835天玑6100平台规格参数_MTK联发科安卓核心板方案定制开发

联发科MT6835平台集成了蓝牙、FM、WLAN 和 GPS 模块&#xff0c;是一个高度集成的基带平台。该芯片集成了两个 Arm Cortex-A76 内核&#xff08;运行频率高达 2.2GHz&#xff09;、六个 Arm Cortex-A55 内核&#xff08;运行频率高达 2.0 GHz&#xff09;和强大的多标准视频编解…

认识+安装ElasticSearch

1. 为什么要学习ElasticSearch? 一般的来说,项目中的搜索功能尤其是电商项目,商品的搜索肯定是访问频率最高的页面之一。目前搜索功能是基于数据库的模糊搜索来实现的&#xff0c;存在很多问题。 1.1 数据库搜索所存在的问题 1.1.1 查询效率较低 由于数据库模糊查询不走索引&…

QPS和TPS 的区别是什么?QPS 大了会有什么问题,怎么解决?

QPS 和 TPS 的区别是什么&#xff1f;QPS 大了会有什么问题&#xff0c;怎么解决&#xff1f; QPS&#xff08;Queries Per Second&#xff09;和 TPS&#xff08;Transactions Per Second&#xff09;都是衡量系统性能的重要指标&#xff0c;尤其是在 Web 服务、数据库和分布…

Mac中配置vscode(第一期:python开发)

1、终端中安装 xcode-select --install #mac的终端中安装该开发工具 xcode-select -p #显示当前 Xcode 命令行工具的安装路径注意&#xff1a;xcode-select --install是在 macOS 上安装命令行开发工具(Command Line Tools)的关键命令。安装的主要组件包括&#xff1a;C/C 编…

【网络协议】静态路由详解

网络中的路由器通过以下两种方式之一发现远程网络&#xff1a; 静态配置路由动态路由协议 在本文&#xff0c;我们将学习关于静态路由的各种概念&#xff0c;例如如何配置静态路由、路由表如何进行决策、路由接口等相关知识。 文章目录 引言直连网络静态路由路由表原则原则1原…

【杂记】qt

1、终端下载PySide6以转换文件格式&#xff1a;pip install PySide6 -i https://pypi.tuna.tsinghua.edu.cn/simple 命令提示符下载完毕后&#xff1a;powerShell &#xff1a;cd 跳转到文件对应地址 &#xff08;1、pyside6-uic.exe test.ui -o test.py #将Ui界面文件转换成…

【C#】C# 使用onnxruntime报错记录

1、 C#使用onnxruntime时报CUDA版本错误 Bug信息&#xff1a;The given version [14] is not supported, only version 1 to 10 is supported in this build. 导致这个bug的原因是&#xff0c;在win11系统下的windows/system32文件夹下有一个默认的onnxruntime.dll&#xff0c;…