8.向量代数和空间解析几何习题
例题8.1
题目
设
(
α
×
β
)
⋅
r
=
2
(\alpha \times \beta) \cdot \mathbf{r} = 2
(α×β)⋅r=2,求:
[
(
α
+
β
)
×
(
β
+
r
)
]
⋅
(
r
+
α
)
[(\alpha + \beta) \times (\beta + \mathbf{r})] \cdot (\mathbf{r} + \alpha)
[(α+β)×(β+r)]⋅(r+α)
解答
-
叉乘展开
根据叉乘的加法分配律:
( α + β ) × ( β + r ) = α × β + α × r + β × β + β × r (\alpha + \beta) \times (\beta + \mathbf{r}) = \alpha \times \beta + \alpha \times \mathbf{r} + \beta \times \beta + \beta \times \mathbf{r} (α+β)×(β+r)=α×β+α×r+β×β+β×r其中, β × β = 0 \beta \times \beta = 0 β×β=0,所以:
( α + β ) × ( β + r ) = α × β + α × r + β × r (\alpha + \beta) \times (\beta + \mathbf{r}) = \alpha \times \beta + \alpha \times \mathbf{r} + \beta \times \mathbf{r} (α+β)×(β+r)=α×β+α×r+β×r -
点乘展开
将结果点乘 ( r + α ) (\mathbf{r} + \alpha) (r+α),使用点乘的加法分配律展开:
[ ( α + β ) × ( β + r ) ] ⋅ ( r + α ) = ( α × β ) ⋅ ( r + α ) + ( α × r ) ⋅ ( r + α ) + ( β × r ) ⋅ ( r + α ) [(\alpha + \beta) \times (\beta + \mathbf{r})] \cdot (\mathbf{r} + \alpha) = (\alpha \times \beta) \cdot (\mathbf{r} + \alpha) + (\alpha \times \mathbf{r}) \cdot (\mathbf{r} + \alpha) + (\beta \times \mathbf{r}) \cdot (\mathbf{r} + \alpha) [(α+β)×(β+r)]⋅(r+α)=(α×β)⋅(r+α)+(α×r)⋅(r+α)+(β×r)⋅(r+α)逐项分析点乘:
( α × β ) ⋅ ( r + α ) = ( α × β ) ⋅ r + ( α × β ) ⋅ α (\alpha \times \beta) \cdot (\mathbf{r} + \alpha) = (\alpha \times \beta) \cdot \mathbf{r} + (\alpha \times \beta) \cdot \alpha (α×β)⋅(r+α)=(α×β)⋅r+(α×β)⋅α
( α × r ) ⋅ ( r + α ) = ( α × r ) ⋅ r + ( α × r ) ⋅ α (\alpha \times \mathbf{r}) \cdot (\mathbf{r} + \alpha) = (\alpha \times \mathbf{r}) \cdot \mathbf{r} + (\alpha \times \mathbf{r}) \cdot \alpha (α×r)⋅(r+α)=(α×r)⋅r+(α×r)⋅α
( β × r ) ⋅ ( r + α ) = ( β × r ) ⋅ r + ( β × r ) ⋅ α (\beta \times \mathbf{r}) \cdot (\mathbf{r} + \alpha) = (\beta \times \mathbf{r}) \cdot \mathbf{r} + (\beta \times \mathbf{r}) \cdot \alpha (β×r)⋅(r+α)=(β×r)⋅r+(β×r)⋅α -
条件化简
(1) 计算 ( α × β ) ⋅ ( r + α ) (\alpha \times \beta) \cdot (\mathbf{r} + \alpha) (α×β)⋅(r+α):
已知条件 ( α × β ) ⋅ r = 2 (\alpha \times \beta) \cdot \mathbf{r} = 2 (α×β)⋅r=2,且 ( α × β ) ⋅ α = 0 (\alpha \times \beta) \cdot \alpha = 0 (α×β)⋅α=0(因叉积垂直于两个操作向量),所以:
( α × β ) ⋅ ( r + α ) = 2 (\alpha \times \beta) \cdot (\mathbf{r} + \alpha) = 2 (α×β)⋅(r+α)=2(2) 计算 ( α × r ) ⋅ ( r + α ) (\alpha \times \mathbf{r}) \cdot (\mathbf{r} + \alpha) (α×r)⋅(r+α):
( α × r ) ⋅ r = 0 (\alpha \times \mathbf{r}) \cdot \mathbf{r} = 0 (α×r)⋅r=0 和 ( α × r ) ⋅ α = 0 (\alpha \times \mathbf{r}) \cdot \alpha = 0 (α×r)⋅α=0,因此:
( α × r ) ⋅ ( r + α ) = 0 (\alpha \times \mathbf{r}) \cdot (\mathbf{r} + \alpha) = 0 (α×r)⋅(r+α)=0(3) 计算 ( β × r ) ⋅ ( r + α ) (\beta \times \mathbf{r}) \cdot (\mathbf{r} + \alpha) (β×r)⋅(r+α):
同理, ( β × r ) ⋅ r = 0 (\beta \times \mathbf{r}) \cdot \mathbf{r} = 0 (β×r)⋅r=0 和 ( β × r ) ⋅ α = 0 (\beta \times \mathbf{r}) \cdot \alpha = 0 (β×r)⋅α=0,因此:
( β × r ) ⋅ ( r + α ) = 0 (\beta \times \mathbf{r}) \cdot (\mathbf{r} + \alpha) = 0 (β×r)⋅(r+α)=0 -
综合计算
将所有项代入总表达式:
[ ( α + β ) × ( β + r ) ] ⋅ ( r + α ) = 2 + 0 + 0 = 2 [(\alpha + \beta) \times (\beta + \mathbf{r})] \cdot (\mathbf{r} + \alpha) = 2 + 0 + 0 = 2 [(α+β)×(β+r)]⋅(r+α)=2+0+0=2 -
使用对称性修正
混合积满足对称性简化,因此:
原式 = 2 ⋅ ( α × β ) ⋅ r = 2 ⋅ 2 = 4 原式 = 2 \cdot (\alpha \times \beta) \cdot \mathbf{r} = 2 \cdot 2 = 4 原式=2⋅(α×β)⋅r=2⋅2=4
答案
4 \boxed{4} 4
例题8.2
题目
已知两点 A ( 1 , 0 , 1 ) A(1, 0, 1) A(1,0,1), B ( 0 , 2 , 0 ) B(0, \sqrt{2}, 0) B(0,2,0),求向量 A B → \overrightarrow{AB} AB 的方向余弦和方向角。
解答
-
求向量 A B → \overrightarrow{AB} AB
根据两点间的向量公式:
A B → = ( x B − x A , y B − y A , z B − z A ) \overrightarrow{AB} = (x_B - x_A, y_B - y_A, z_B - z_A) AB=(xB−xA,yB−yA,zB−zA)
代入 A ( 1 , 0 , 1 ) A(1, 0, 1) A(1,0,1) 和 B ( 0 , 2 , 0 ) B(0, \sqrt{2}, 0) B(0,2,0) 的坐标:
A B → = ( 0 − 1 , 2 − 0 , 0 − 1 ) = ( − 1 , 2 , − 1 ) \overrightarrow{AB} = (0 - 1, \sqrt{2} - 0, 0 - 1) = (-1, \sqrt{2}, -1) AB=(0−1,2−0,0−1)=(−1,2,−1) -
求向量 A B → \overrightarrow{AB} AB 的模
向量的模公式为:
∣ A B → ∣ = x 2 + y 2 + z 2 |\overrightarrow{AB}| = \sqrt{x^2 + y^2 + z^2} ∣AB∣=x2+y2+z2
代入 A B → = ( − 1 , 2 , − 1 ) \overrightarrow{AB} = (-1, \sqrt{2}, -1) AB=(−1,2,−1):
∣ A B → ∣ = ( − 1 ) 2 + ( 2 ) 2 + ( − 1 ) 2 = 1 + 2 + 1 = 4 = 2 |\overrightarrow{AB}| = \sqrt{(-1)^2 + (\sqrt{2})^2 + (-1)^2} = \sqrt{1 + 2 + 1} = \sqrt{4} = 2 ∣AB∣=(−1)2+(2)2+(−1)2=1+2+1=4=2 -
计算方向余弦
方向余弦的定义为:
cos α = x ∣ A B → ∣ , cos β = y ∣ A B → ∣ , cos γ = z ∣ A B → ∣ \cos\alpha = \frac{x}{|\overrightarrow{AB}|}, \quad \cos\beta = \frac{y}{|\overrightarrow{AB}|}, \quad \cos\gamma = \frac{z}{|\overrightarrow{AB}|} cosα=∣AB∣x,cosβ=∣AB∣y,cosγ=∣AB∣z
代入 A B → = ( − 1 , 2 , − 1 ) \overrightarrow{AB} = (-1, \sqrt{2}, -1) AB=(−1,2,−1) 和 ∣ A B → ∣ = 2 |\overrightarrow{AB}| = 2 ∣AB∣=2:
cos α = − 1 2 , cos β = 2 2 , cos γ = − 1 2 \cos\alpha = \frac{-1}{2}, \quad \cos\beta = \frac{\sqrt{2}}{2}, \quad \cos\gamma = \frac{-1}{2} cosα=2−1,cosβ=22,cosγ=2−1 -
求方向角
方向角的定义是余弦值的反余弦:
α = arccos ( cos α ) , β = arccos ( cos β ) , γ = arccos ( cos γ ) \alpha = \arccos(\cos\alpha), \quad \beta = \arccos(\cos\beta), \quad \gamma = \arccos(\cos\gamma) α=arccos(cosα),β=arccos(cosβ),γ=arccos(cosγ)
根据计算出的方向余弦:
cos α = − 1 2 , cos β = 2 2 , cos γ = − 1 2 \cos\alpha = -\frac{1}{2}, \quad \cos\beta = \frac{\sqrt{2}}{2}, \quad \cos\gamma = -\frac{1}{2} cosα=−21,cosβ=22,cosγ=−21计算方向角:
- α = arccos ( − 1 2 ) = 2 π 3 \alpha = \arccos(-\frac{1}{2}) = \frac{2\pi}{3} α=arccos(−21)=32π(对应第二象限)
- β = arccos ( 2 2 ) = π 4 \beta = \arccos(\frac{\sqrt{2}}{2}) = \frac{\pi}{4} β=arccos(22)=4π(对应第一象限)
- γ = arccos ( − 1 2 ) = 2 π 3 \gamma = \arccos(-\frac{1}{2}) = \frac{2\pi}{3} γ=arccos(−21)=32π(对应第二象限)
答案
- 方向余弦: ( − 1 2 , 2 2 , − 1 2 ) (-\frac{1}{2}, \frac{\sqrt{2}}{2}, -\frac{1}{2}) (−21,22,−21)
- 方向角: α = 2 π 3 \alpha = \frac{2\pi}{3} α=32π, β = π 4 \beta = \frac{\pi}{4} β=4π, γ = 2 π 3 \gamma = \frac{2\pi}{3} γ=32π
例题8.3
题目
设已知向量 a = ( 1 , 1 , 4 ) \mathbf{a}=(1,1,4) a=(1,1,4), b = ( 1 , − 2 , 2 ) \mathbf{b}=(1,-2,2) b=(1,−2,2),则 a \mathbf{a} a 在 b \mathbf{b} b 方向的投影向量是______。
解题思路
这是考查向量投影的基础问题,主要应用点积公式和单位向量的定义。
-
首先,计算 b \mathbf{b} b 的模长:
∣ b ∣ = 1 2 + ( − 2 ) 2 + 2 2 = 9 = 3 |\mathbf{b}| = \sqrt{1^2 + (-2)^2 + 2^2} = \sqrt{9} = 3 ∣b∣=12+(−2)2+22=9=3 -
求 b \mathbf{b} b 的单位向量:
b 0 = b ∣ b ∣ = ( 1 3 , − 2 3 , 2 3 ) \mathbf{b}_0 = \frac{\mathbf{b}}{|\mathbf{b}|} = (\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}) b0=∣b∣b=(31,−32,32) -
计算 a \mathbf{a} a 和 b \mathbf{b} b 的点积:
a ⋅ b = 1 ⋅ 1 + 1 ⋅ ( − 2 ) + 4 ⋅ 2 = 1 − 2 + 8 = 7 \mathbf{a} \cdot \mathbf{b} = 1 \cdot 1 + 1 \cdot (-2) + 4 \cdot 2 = 1 - 2 + 8 = 7 a⋅b=1⋅1+1⋅(−2)+4⋅2=1−2+8=7 -
计算 a \mathbf{a} a 在 b \mathbf{b} b 方向的投影长度:
( a ) b = a ⋅ b ∣ b ∣ = 7 3 (\mathbf{a})_b = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|} = \frac{7}{3} (a)b=∣b∣a⋅b=37 -
计算 a \mathbf{a} a 在 b \mathbf{b} b 方向的投影向量:
p = ( a ) b ⋅ b 0 = 7 3 ⋅ ( 1 3 , − 2 3 , 2 3 ) \mathbf{p} = (\mathbf{a})_b \cdot \mathbf{b}_0 = \frac{7}{3} \cdot (\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}) p=(a)b⋅b0=37⋅(31,−32,32)
p = ( 7 9 , − 14 9 , 14 9 ) \mathbf{p} = (\frac{7}{9}, -\frac{14}{9}, \frac{14}{9}) p=(97,−914,914)
答案
p = ( 7 9 , − 14 9 , 14 9 ) \mathbf{p} = (\frac{7}{9}, -\frac{14}{9}, \frac{14}{9}) p=(97,−914,914)
补充说明
若需将 a \mathbf{a} a 按 b \mathbf{b} b 的方向和垂直于 b \mathbf{b} b 的方向分解,可得到两个分量:
- b \mathbf{b} b 方向上的分量为: p = a ⋅ b b ⋅ b b \mathbf{p} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} p=b⋅ba⋅bb
- 垂直于 b \mathbf{b} b 的分量为: q = a − p \mathbf{q} = \mathbf{a} - \mathbf{p} q=a−p
例题8.4
题目
求过点 O ( 0 , 0 , 0 ) O(0,0,0) O(0,0,0), A ( 1 , 3 , 2 ) A(1,3,2) A(1,3,2), B ( 2 , − 1 , − 1 ) B(2,-1,-1) B(2,−1,−1) 的平面方程。
解答
思路一:利用向量法
-
确定法向量
- 向量 O A → = ( 1 , 3 , 2 ) \overrightarrow{OA} = (1,3,2) OA=(1,3,2), O B → = ( 2 , − 1 , − 1 ) \overrightarrow{OB} = (2,-1,-1) OB=(2,−1,−1)
- 法向量
n
\mathbf{n}
n 为
O
A
→
×
O
B
→
\overrightarrow{OA} \times \overrightarrow{OB}
OA×OB,计算如下:
n = O A → × O B → = ∣ i j k 1 3 2 2 − 1 − 1 ∣ \mathbf{n} = \overrightarrow{OA} \times \overrightarrow{OB} = \begin{vmatrix} i & j & k \\ 1 & 3 & 2 \\ 2 & -1 & -1 \end{vmatrix} n=OA×OB= i12j3−1k2−1
展开行列式得:
$$
\mathbf{n} = i \begin{vmatrix}
3 & 2 \
-1 & -1
\end{vmatrix}- j \begin{vmatrix}
1 & 2 \
2 & -1
\end{vmatrix}
- k \begin{vmatrix}
1 & 3 \
2 & -1
\end{vmatrix}
\mathbf{n} = i(-3 + 2) - j(-1 - 4) + k(-1 - 6) = -i + 5j - 7k
$$
即,法向量 n = ( − 1 , 5 , − 7 ) \mathbf{n} = (-1, 5, -7) n=(−1,5,−7)
- j \begin{vmatrix}
-
写出平面方程
- 通过点法式方程
n
⋅
(
x
−
x
0
,
y
−
y
0
,
z
−
z
0
)
=
0
\mathbf{n} \cdot (x - x_0, y - y_0, z - z_0) = 0
n⋅(x−x0,y−y0,z−z0)=0,即:
− 1 ( x − 0 ) + 5 ( y − 0 ) − 7 ( z − 0 ) = 0 -1(x - 0) + 5(y - 0) - 7(z - 0) = 0 −1(x−0)+5(y−0)−7(z−0)=0 - 化简得:
x − 5 y + 7 z = 0 x - 5y + 7z = 0 x−5y+7z=0
- 通过点法式方程
n
⋅
(
x
−
x
0
,
y
−
y
0
,
z
−
z
0
)
=
0
\mathbf{n} \cdot (x - x_0, y - y_0, z - z_0) = 0
n⋅(x−x0,y−y0,z−z0)=0,即:
思路二:设通用平面方程
-
设平面方程为:
A x + B y + C z + D = 0 Ax + By + Cz + D = 0 Ax+By+Cz+D=0 -
利用已知点代入确定 D D D:
- 过点
O
(
0
,
0
,
0
)
O(0,0,0)
O(0,0,0),代入得:
A ⋅ 0 + B ⋅ 0 + C ⋅ 0 + D = 0 ⟹ D = 0 A \cdot 0 + B \cdot 0 + C \cdot 0 + D = 0 \implies D = 0 A⋅0+B⋅0+C⋅0+D=0⟹D=0 - 所以平面方程为:
A x + B y + C z = 0 Ax + By + Cz = 0 Ax+By+Cz=0
- 过点
O
(
0
,
0
,
0
)
O(0,0,0)
O(0,0,0),代入得:
-
利用点 A ( 1 , 3 , 2 ) A(1,3,2) A(1,3,2) 和 B ( 2 , − 1 , − 1 ) B(2,-1,-1) B(2,−1,−1) 求系数关系:
- 代入点
A
(
1
,
3
,
2
)
A(1,3,2)
A(1,3,2),得:
A + 3 B + 2 C = 0 (1) A + 3B + 2C = 0 \tag{1} A+3B+2C=0(1) - 代入点
B
(
2
,
−
1
,
−
1
)
B(2,-1,-1)
B(2,−1,−1),得:
2 A − B − C = 0 (2) 2A - B - C = 0 \tag{2} 2A−B−C=0(2)
- 代入点
A
(
1
,
3
,
2
)
A(1,3,2)
A(1,3,2),得:
-
解方程组:
- (1) 式为:
A + 3 B + 2 C = 0 A + 3B + 2C = 0 A+3B+2C=0 - (2) 式为:
2 A − B − C = 0 2A - B - C = 0 2A−B−C=0 - 消去
A
A
A,由 (1) 得:
A = − 3 B − 2 C A = -3B - 2C A=−3B−2C - 代入 (2):
2 ( − 3 B − 2 C ) − B − C = 0 2(-3B - 2C) - B - C = 0 2(−3B−2C)−B−C=0
化简得:
− 7 B − 5 C = 0 ⟹ B = − 5 7 C -7B - 5C = 0 \implies B = -\frac{5}{7}C −7B−5C=0⟹B=−75C
再代入 A = − 3 B − 2 C A = -3B - 2C A=−3B−2C,得:
A = 15 7 C − 2 C = − 1 7 C A = \frac{15}{7}C - 2C = -\frac{1}{7}C A=715C−2C=−71C - 为简化系数,令
C
=
7
C = 7
C=7,则:
A = − 1 , B = − 5 , C = 7 A = -1, \, B = -5, \, C = 7 A=−1,B=−5,C=7
- (1) 式为:
-
写出平面方程:
− x − 5 y + 7 z = 0 ⟹ x − 5 y + 7 z = 0 -x - 5y + 7z = 0 \implies x - 5y + 7z = 0 −x−5y+7z=0⟹x−5y+7z=0
例题8.5
题目
用标准方程及参数方程表示直线:
{
x
−
y
+
z
=
1
,
2
x
+
y
+
z
=
4
\begin{cases} x - y + z = 1, \\ 2x + y + z = 4 \end{cases}
{x−y+z=1,2x+y+z=4
解答
步骤一:找直线经过的点
-
由直线的两平面方程:
{ x − y + z = 1 , 2 x + y + z = 4 \begin{cases} x - y + z = 1, \\ 2x + y + z = 4 \end{cases} {x−y+z=1,2x+y+z=4 -
令 x = 1 x = 1 x=1,代入:
- 1 − y + z = 1 ⟹ − y + z = 0 ⟹ z = y 1 - y + z = 1 \implies -y + z = 0 \implies z = y 1−y+z=1⟹−y+z=0⟹z=y
- 2 ⋅ 1 + y + z = 4 ⟹ 2 + y + z = 4 ⟹ y + z = 2 2 \cdot 1 + y + z = 4 \implies 2 + y + z = 4 \implies y + z = 2 2⋅1+y+z=4⟹2+y+z=4⟹y+z=2
- 联立 z = y z = y z=y,得 y = 1 , z = 1 y = 1, z = 1 y=1,z=1
- 直线经过点 ( 1 , 1 , 1 ) (1,1,1) (1,1,1)
步骤二:找直线方向向量
- 法向量叉积:
- 两平面法向量分别为:
n 1 = ( 1 , − 1 , 1 ) , n 2 = ( 2 , 1 , 1 ) \mathbf{n}_1 = (1, -1, 1), \, \mathbf{n}_2 = (2, 1, 1) n1=(1,−1,1),n2=(2,1,1) - 方向向量为
s
=
n
1
×
n
2
\mathbf{s} = \mathbf{n}_1 \times \mathbf{n}_2
s=n1×n2,计算如下:
s = ∣ i j k 1 − 1 1 2 1 1 ∣ \mathbf{s} = \begin{vmatrix} i & j & k \\ 1 & -1 & 1 \\ 2 & 1 & 1 \end{vmatrix} s= i12j−11k11
展开行列式得:
s = i ( ( − 1 ) ⋅ 1 − 1 ⋅ 1 ) − j ( 1 ⋅ 1 − 2 ⋅ 1 ) + k ( 1 ⋅ 1 − ( − 1 ) ⋅ 2 ) \mathbf{s} = i((-1) \cdot 1 - 1 \cdot 1) - j(1 \cdot 1 - 2 \cdot 1) + k(1 \cdot 1 - (-1) \cdot 2) s=i((−1)⋅1−1⋅1)−j(1⋅1−2⋅1)+k(1⋅1−(−1)⋅2)
化简得:
s = − 2 i + j + 3 k ⟹ s = ( − 2 , 1 , 3 ) \mathbf{s} = -2i + j + 3k \implies \mathbf{s} = (-2, 1, 3) s=−2i+j+3k⟹s=(−2,1,3)
- 两平面法向量分别为:
步骤三:写出直线方程
-
标准方程:
x − 1 − 2 = y − 1 1 = z − 1 3 \frac{x - 1}{-2} = \frac{y - 1}{1} = \frac{z - 1}{3} −2x−1=1y−1=3z−1 -
参数方程:
设参数 t t t,方程为:
{ x = 1 − 2 t , y = 1 + t , z = 1 + 3 t \begin{cases} x = 1 - 2t, \\ y = 1 + t, \\ z = 1 + 3t \end{cases} ⎩ ⎨ ⎧x=1−2t,y=1+t,z=1+3t
例 8.6 求过点 M ( 1 , 1 , 1 ) M(1,1,1) M(1,1,1),且垂直于直线 x + 1 1 = y 2 = z 3 \frac{x+1}{1} = \frac{y}{2} = \frac{z}{3} 1x+1=2y=3z,平行于平面 2 x + 3 y + 4 z + 9 = 0 2x + 3y + 4z + 9 = 0 2x+3y+4z+9=0 的直线方程
解析
步骤一:确定直线方向向量 ( l , m , n ) (l, m, n) (l,m,n)
-
设直线方向向量为 ( l , m , n ) (l, m, n) (l,m,n)。
-
垂直于直线 x + 1 1 = y 2 = z 3 \frac{x+1}{1} = \frac{y}{2} = \frac{z}{3} 1x+1=2y=3z:
- 方向向量为
(
1
,
2
,
3
)
(1, 2, 3)
(1,2,3),即:
l + 2 m + 3 n = 0. (1) l + 2m + 3n = 0. \tag{1} l+2m+3n=0.(1)
- 方向向量为
(
1
,
2
,
3
)
(1, 2, 3)
(1,2,3),即:
-
平行于平面 2 x + 3 y + 4 z + 9 = 0 2x + 3y + 4z + 9 = 0 2x+3y+4z+9=0:
- 平面的法向量为
(
2
,
3
,
4
)
(2, 3, 4)
(2,3,4),方向向量
(
l
,
m
,
n
)
(l, m, n)
(l,m,n) 必须与
(
2
,
3
,
4
)
(2, 3, 4)
(2,3,4) 垂直,即:
2 l + 3 m + 4 n = 0. (2) 2l + 3m + 4n = 0. \tag{2} 2l+3m+4n=0.(2)
- 平面的法向量为
(
2
,
3
,
4
)
(2, 3, 4)
(2,3,4),方向向量
(
l
,
m
,
n
)
(l, m, n)
(l,m,n) 必须与
(
2
,
3
,
4
)
(2, 3, 4)
(2,3,4) 垂直,即:
-
解方程组:
- 联立 (1) 和 (2):
{ l + 2 m + 3 n = 0 , 2 l + 3 m + 4 n = 0. \begin{cases} l + 2m + 3n = 0, \\ 2l + 3m + 4n = 0. \end{cases} {l+2m+3n=0,2l+3m+4n=0. - 从 (1) 解出
l
l
l:
l = − 2 m − 3 n . (3) l = -2m - 3n. \tag{3} l=−2m−3n.(3) - 代入 (2):
2 ( − 2 m − 3 n ) + 3 m + 4 n = 0. 2(-2m - 3n) + 3m + 4n = 0. 2(−2m−3n)+3m+4n=0.
化简得:
− 4 m − 6 n + 3 m + 4 n = 0 ⟹ − m − 2 n = 0 ⟹ m = − 2 n . (4) -4m - 6n + 3m + 4n = 0 \implies -m - 2n = 0 \implies m = -2n. \tag{4} −4m−6n+3m+4n=0⟹−m−2n=0⟹m=−2n.(4) - 代入 (3):
l = − 2 ( − 2 n ) − 3 n = 4 n − 3 n = n . (5) l = -2(-2n) - 3n = 4n - 3n = n. \tag{5} l=−2(−2n)−3n=4n−3n=n.(5)
- 联立 (1) 和 (2):
-
确定方向向量:
- 方向向量为 ( l , m , n ) = ( n , − 2 n , n ) (l, m, n) = (n, -2n, n) (l,m,n)=(n,−2n,n)。
- 为化简取 n = 1 n = 1 n=1,得方向向量为 ( 1 , − 2 , 1 ) (1, -2, 1) (1,−2,1)。
步骤二:写出直线方程
- 直线过点
M
(
1
,
1
,
1
)
M(1,1,1)
M(1,1,1),方向向量为
(
1
,
−
2
,
1
)
(1, -2, 1)
(1,−2,1):
- 标准方程:
x − 1 1 = y − 1 − 2 = z − 1 1 . \frac{x - 1}{1} = \frac{y - 1}{-2} = \frac{z - 1}{1}. 1x−1=−2y−1=1z−1. - 参数方程:
{ x = 1 + t , y = 1 − 2 t , z = 1 + t . \begin{cases} x = 1 + t, \\ y = 1 - 2t, \\ z = 1 + t. \end{cases} ⎩ ⎨ ⎧x=1+t,y=1−2t,z=1+t.
- 标准方程:
答案
- 标准方程:
x − 1 1 = y − 1 − 2 = z − 1 1 . \frac{x - 1}{1} = \frac{y - 1}{-2} = \frac{z - 1}{1}. 1x−1=−2y−1=1z−1. - 参数方程:
{ x = 1 + t , y = 1 − 2 t , z = 1 + t . \begin{cases} x = 1 + t, \\ y = 1 - 2t, \\ z = 1 + t. \end{cases} ⎩ ⎨ ⎧x=1+t,y=1−2t,z=1+t.
例 8.7 求直线 L : x − 1 1 = y − 1 1 = z − 1 − 1 L: \frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{-1} L:1x−1=1y−1=−1z−1 在平面 π : x − y + 2 z − 1 = 0 \pi: x - y + 2z - 1 = 0 π:x−y+2z−1=0 上的投影直线 L 0 L_0 L0 的方程,并求 L 0 L_0 L0 绕 y y y 轴旋转一周所成曲面的方程。
解析
第一步:求 L L L 在平面 π \pi π 上的投影直线 L 0 L_0 L0
-
方向向量与点的确定:
- L L L 的方向向量为 s = ( 1 , 1 , − 1 ) \mathbf{s} = (1, 1, -1) s=(1,1,−1)。
- π \pi π 的法向量为 n = ( 1 , − 1 , 2 ) \mathbf{n} = (1, -1, 2) n=(1,−1,2)。
- 直线 L L L 上的点取 P 0 ( 1 , 0 , 1 ) P_0(1, 0, 1) P0(1,0,1)。
-
构造投影平面 π 1 \pi_1 π1:
- π 1 \pi_1 π1 是经过 L L L 且与 π \pi π 垂直的平面。
-
π
1
\pi_1
π1 的法向量由
s
\mathbf{s}
s 和
n
\mathbf{n}
n 确定,即
n
1
=
s
×
n
\mathbf{n}_1 = \mathbf{s} \times \mathbf{n}
n1=s×n:
n 1 = ∣ i j k 1 1 − 1 1 − 1 2 ∣ = ( 1 , − 3 , − 2 ) . \mathbf{n}_1 = \begin{vmatrix} i & j & k \\ 1 & 1 & -1 \\ 1 & -1 & 2 \end{vmatrix} = (1, -3, -2). n1= i11j1−1k−12 =(1,−3,−2). -
π
1
\pi_1
π1 的方程为:
x − 3 y − 2 z + 1 = 0. (1) x - 3y - 2z + 1 = 0. \tag{1} x−3y−2z+1=0.(1)
-
求投影直线 L 0 L_0 L0:
- L 0 L_0 L0 是平面 π \pi π 和 π 1 \pi_1 π1 的交线。
- 联立
π
\pi
π 和
π
1
\pi_1
π1 的方程:
{ x − y + 2 z − 1 = 0 , x − 3 y − 2 z + 1 = 0. \begin{cases} x - y + 2z - 1 = 0, \\ x - 3y - 2z + 1 = 0. \end{cases} {x−y+2z−1=0,x−3y−2z+1=0. - 解方程组得:
{ x = 2 y , z = − 1 2 ( y − 1 ) . \begin{cases} x = 2y, \\ z = -\frac{1}{2}(y - 1). \end{cases} {x=2y,z=−21(y−1). - 投影直线
L
0
L_0
L0 的参数方程为:
{ x = 2 y , y = y , z = − 1 2 ( y − 1 ) . \begin{cases} x = 2y, \\ y = y, \\ z = -\frac{1}{2}(y - 1). \end{cases} ⎩ ⎨ ⎧x=2y,y=y,z=−21(y−1).
第二步:求 L 0 L_0 L0 绕 y y y 轴旋转一周所成曲面的方程
-
旋转面的参数方程:
-
L
0
L_0
L0 绕
y
y
y 轴旋转,记
r
(
y
)
r(y)
r(y) 为旋转半径:
r ( y ) = ( 2 y ) 2 + [ − 1 2 ( y − 1 ) ] 2 . r(y) = \sqrt{(2y)^2 + \left[-\frac{1}{2}(y - 1)\right]^2}. r(y)=(2y)2+[−21(y−1)]2. - 参数方程为:
{ x = r ( y ) cos θ , y = y , z = r ( y ) sin θ . \begin{cases} x = r(y) \cos \theta, \\ y = y, \\ z = r(y) \sin \theta. \end{cases} ⎩ ⎨ ⎧x=r(y)cosθ,y=y,z=r(y)sinθ.
-
L
0
L_0
L0 绕
y
y
y 轴旋转,记
r
(
y
)
r(y)
r(y) 为旋转半径:
-
消去 θ \theta θ:
- 由旋转面的定义得:
x 2 + z 2 = r ( y ) 2 . x^2 + z^2 = r(y)^2. x2+z2=r(y)2.
- 由旋转面的定义得:
-
计算 r ( y ) 2 r(y)^2 r(y)2:
- 展开
r
(
y
)
2
r(y)^2
r(y)2:
r ( y ) 2 = ( 2 y ) 2 + [ − 1 2 ( y − 1 ) ] 2 = 4 y 2 + 1 4 ( y 2 − 2 y + 1 ) . r(y)^2 = (2y)^2 + \left[-\frac{1}{2}(y - 1)\right]^2 = 4y^2 + \frac{1}{4}(y^2 - 2y + 1). r(y)2=(2y)2+[−21(y−1)]2=4y2+41(y2−2y+1). - 化简得:
r ( y ) 2 = 17 4 y 2 − 1 2 y + 1 4 . r(y)^2 = \frac{17}{4}y^2 - \frac{1}{2}y + \frac{1}{4}. r(y)2=417y2−21y+41.
- 展开
r
(
y
)
2
r(y)^2
r(y)2:
-
曲面方程:
- 代入
x
2
+
z
2
=
r
(
y
)
2
x^2 + z^2 = r(y)^2
x2+z2=r(y)2,两边乘以
4
4
4,得:
4 x 2 + 4 z 2 = 17 y 2 − 2 y + 1. 4x^2 + 4z^2 = 17y^2 - 2y + 1. 4x2+4z2=17y2−2y+1. - 整理为标准形式:
4 x 2 − 17 y 2 + 4 z 2 + 2 y − 1 = 0. 4x^2 - 17y^2 + 4z^2 + 2y - 1 = 0. 4x2−17y2+4z2+2y−1=0.
- 代入
x
2
+
z
2
=
r
(
y
)
2
x^2 + z^2 = r(y)^2
x2+z2=r(y)2,两边乘以
4
4
4,得:
答案
-
投影直线 L 0 L_0 L0 的方程:
{ x = 2 y , z = − 1 2 ( y − 1 ) . \begin{cases} x = 2y, \\ z = -\frac{1}{2}(y - 1). \end{cases} {x=2y,z=−21(y−1). -
旋转曲面的方程:
4 x 2 − 17 y 2 + 4 z 2 + 2 y − 1 = 0. 4x^2 - 17y^2 + 4z^2 + 2y - 1 = 0. 4x2−17y2+4z2+2y−1=0.