背景介绍
Shuffle 演进
随着B站业务的飞速发展,数据规模呈指数级增长,计算集群也逐步从单机房扩展到多机房部署模式。多个业务线依托大数据平台驱动核心业务,大数据系统的高效性与稳定性成为公司业务发展的重要基石。如图1,目前在大数据基础架构下,我们主要采用 Spark、Flink、Presto 以及 Hive 作为计算引擎支撑各类复杂业务场景需求,离线计算集群基本每天运行30+万左右的 Spark 作业,包括任务调度平台的 ETL 任务、Kyuubi 提交的 Adhoc 作业等,其作业的 Shuffle 数据规模能够达到30PB以上,同时单个作业的 Shuffle 量最大规模有几百TB。同时 Shuffle 算子作为大数据计算引擎中间数据处理最重要的算子,Shuffle 的稳定性关系着线上大量离线作业的可靠性和性能。因此,对于海量的 Shuffle 中间数据和复杂多变的计算环境来说,保证 Shuffle 数据处理的稳定性对线上作业的稳定性和运行效率尤为重要。
图1:B站大数据基础架构图