音频进阶学习九——离散时间傅里叶变换DTFT

news2025/1/6 19:54:35

文章目录


前言

按照傅里叶发展的历史,本应该先介绍傅里叶级数,但是由于DTFT更通用,且DTFT是属于核心理论,而DFS是DTFT的一种特列,所以该系列文章中先介绍DTFT,也就是离散时间傅里叶变换。

|版本声明:山河君,未经博主允许,禁止转载


一、DTFT的解释

1.DTFT公式

看一下DTFT和CFT也就是连续傅里叶变换的对比:

  • DTFT
    X ( ω ) = ∑ n = − ∞ ∞ x [ n ] e − j ω n X(\omega)=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} X(ω)=n=x[n]ejωn
  • CFT
    F ( ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t d t F(\omega)=\int^{\infty}_{-\infty}f(t)e^{-j\omega t}dt F(ω)=f(t)etdt

对比CFT,我们可以看到DTFT和CFT的差别在于,一个自变量是 n n n,一个自变量是 t t t,一个是非连续一个是连续。所以二者对比:

  • 连续信号:在CFT中,频率是连续变量,频谱 F ( ω ) F(\omega) F(ω)对应的是一个实数角频率 ω \omega ω,直接描述频率分量。
  • 离散信号: 在 DTFT ( 包括DFT) 中,由于信号是离散的,频谱的周期性引入了单位圆上的频率表示。对于 X ( ω ) X(\omega) X(ω)写作 X ( e j ω ) X(e^{j\omega}) X(e),所以DTFT写作为:
    X ( e j ω ) = ∑ n = − ∞ ∞ x [ n ] e − j ω n X(e^{j\omega})=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} X(e)=n=x[n]ejωn

2.DTFT右边释义

对于DTFT右边 ∑ n = − ∞ ∞ x [ n ] e − j ω n \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} n=x[n]ejωn我们来一步步分析这个公式的作用。

1) 复指数 e − j ω n e^{-j\omega n} ejωn

上一篇文章中,我们用欧拉公式将极坐标表示为复指数形式:
e j θ = cos ⁡ ( θ ) + j sin ⁡ ( θ ) e^{j\theta}=\cos(\theta)+j\sin(\theta) ejθ=cos(θ)+jsin(θ)
由此可以得到
e − j ω n = > cos ⁡ ( j ω n ) − j s i n ( ω n ) e^{-j\omega n}=>\cos(j\omega n)-jsin(\omega n) ejωn=>cos(jωn)jsin(ωn)

  • 实部: cos ⁡ ( j ω n ) \cos(j\omega n) cos(jωn)是以频率 ω \omega ω的余弦震荡
  • 虚部: s i n ( ω n ) sin(\omega n) sin(ωn)是以频率 ω \omega ω的正弦震荡

它表示的含义是随着 n n n的增长,以频率 ω \omega ω在一个单位圆上以顺时针方式进行周期震荡,如下图:

  • n n n代表时间 t t t [ 0 , 5 ] [0,5] [0,5]区间上的变换
  • Z Z Z的指向是极坐标
  • I m Im Im是虚部比变化
  • R e Re Re是实部变化
    在这里插入图片描述

2)序列与复指数相乘 x [ n ] ∗ e − j ω n x[n]*e^{-j\omega n} x[n]ejωn

复指数序列

在上一篇文章中,我们说 z = r ∗ e i θ z=r*e^{i\theta} z=reiθ表示了极坐标的旋转, r r r代表了模长,而 x [ n ] ∗ e − j ω n x[n]*e^{-j\omega n} x[n]ejωn x [ n ] x[n] x[n]可以是实数和虚数,所以对于 x [ n ] ∗ e − j ω n x[n]*e^{-j\omega n} x[n]ejωn值得注意的是,应该理解为对于 x [ n ] x[n] x[n]进行旋转 − ω n -\omega n ωn角度,而不是理解为模长。

而对于整个 x [ n ] x[n] x[n]的旋转,我们得到的是对于以某一个频率 ω \omega ω旋转了 − ω n -\omega n ωn角度的新的序列,这就叫做复指数序列。其中对于 e − j ω n e^{-j\omega n} ejωn我们看作是对于复指数序列的基函数。

复数的共轭

对于一个复数 z = a + b i z=a+bi z=a+bi,它的共轭复数为 z ‾ = a − b i \overline{z}=a-bi z=abi

  • 复数共轭的几何意义是以实轴为对称轴反射。
  • 共轭复数在许多计算中很重要,例如求复数的模: ∣ z ∣ = z ∗ z ‾ |z|=\sqrt{z*\overline{z}} z=zz ,展开来为:
    ( a + b i ) ∗ a ( − b i ) = a 2 − a b i + a b i − b 2 ∗ i 2 , ( i 2 = − 1 ) = > a 2 + b 2 (a+bi)*a(-bi)=a^2-abi+abi-b^2*i^2,\quad (i^2=-1)=>a^2+b^2 (a+bi)a(bi)=a2abi+abib2i2,(i2=1)=>a2+b2

复数空间的内积使用了共轭来确保以下性质:

  • 共轭对称性
    < f , g > = < g , f > ‾ <f,g>=\overline{<g,f>} <f,g>=<g,f>
  • 非负性
    < f , f > ≥ 0 <f,f> \geq 0 <f,f>≥0
正交

正交:在数学中,正交(orthogonality)通常用于描述两个向量或函数之间的一种关系,表示它们彼此垂直或互不相关。

  • 向量正交:在欧几里得空间中,两个向量 u , v u,v u,v 如果它们的内积为 0,则称它们是正交的,即: u ∗ v = 0 u*v=0 uv=0
  • 函数正交:两个函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)在区间 [ a , b ] [a,b] [a,b]上内积为0,表示为函数正交,即: < f , g > = ∫ a b f ( x ) g ( x ) ∗ d x = 0 <f,g>=\int_a^bf(x)g(x)^*dx =0 <f,g>=abf(x)g(x)dx=0

正交意味着在平面上,角度为90°,例如 ( 1 , i ) , ( 1 , − i ) (1,i),(1,-i) (1,i),(1,i)
在这里插入图片描述

正交集

正交集是由一组两两正交的向量或函数组成的集合。在这种集合中,任意两个不同的元素的内积为 0。而对于复指数序列的基函数 e − j ω n e^{-j\omega n} ejωn则有:
< e − j ω l n , e − j ω m n > = ∑ n = 0 N − 1 e − j ω l n ∗ ( e − j ω m n ) ∗ ( e − j ω m n ) ∗ = e j ω m n , 由于复共轭 < e − j ω l n , e − j ω m n > = ∑ n = 0 N − 1 e − j ω l n ∗ e j ω m n = > ∑ n = 0 N − 1 e j ( ω m − ω l ) n <e^{-j\omega_l n}, e^{-j\omega_m n}>=\sum_{n=0}^{N-1}e^{-j\omega_l n}* (e^{-j\omega_m n})^*\\ (e^{-j\omega_m n})^*=e^{j\omega_m n},\quad 由于复共轭 \\ <e^{-j\omega_l n}, e^{-j\omega_m n}>=\sum_{n=0}^{N-1}e^{-j\omega_l n}*e^{j\omega_m n} =>\\ \sum_{n=0}^{N-1}e^{j(\omega_m-\omega_l)n} <ejωln,ejωmn>=n=0N1ejωln(ejωmn)(ejωmn)=ejωmn,由于复共轭<ejωln,ejωmn>=n=0N1ejωlnejωmn=>n=0N1ej(ωmωl)n
ω m ≠ ω l \omega_m\neq \omega_l ωm=ωl时, e j ( ω m − ω l ) n e^{j(\omega_m-\omega_l)n} ej(ωmωl)n表示的是一个周期性复数,几何上表示在复平面上绕原点画圆,如同上文中对于 e − j ω n e^{-j\omega n} ejωn解释的图像,所以对于累加和 ∑ n = 0 N − 1 e j ( ω m − ω l ) n \sum_{n=0}^{N-1}e^{j(\omega_m-\omega_l)n} n=0N1ej(ωmωl)n为0。

也就是说对于任意复指数序列的基函数,当 ω m ≠ ω l \omega_m\neq \omega_l ωm=ωl时,两者之间相互不影响,这也正是DTFT使用复指数来进行运算的原因!

3)复指数序列求和

DTFT右边对于复指数序列为什么要进行求和,即 ∑ n = − ∞ ∞ x [ n ] e − j ω n \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} n=x[n]ejωn

上面我们说了对于任意复指数序列的基函数,当 ω m ≠ ω l \omega_m\neq \omega_l ωm=ωl时,两者之间相互不影响。所以对于 x [ n ] ∗ e − j ω n x[n]*e^{-j\omega n} x[n]ejωn中,对于某一个 ω k \omega_k ωk x [ n ] ∗ e − j ω k n x[n]*e^{-j\omega_k n} x[n]ejωkn中,将不会包含其他频率的影响。

在欧几里得空间中,投影的定义是: 投影 = < v ∗ u > u 投影=<v*u>u 投影=<vu>u,其中

  • v v v 是要投影的向量
  • u u u是基向量
  • ⟨ v , u ⟩ ⟨v,u⟩ v,u 是内积,量化了 v v v u u u的相似程度

而对于复指数序列投影,则有:
< x [ n ] , e − j ω n > = ∑ n = − ∞ ∞ x [ n ] ∗ e − j ω n ‾ e − j ω n ‾ = e j ω n 共轭性 < x [ n ] , e − j ω n > = ∑ n = − ∞ ∞ x [ n ] e − j ω n <x[n],e^{-j\omega n}>=\sum_{n=-\infty}^{\infty}x[n]*\overline{e^{-j\omega n}} \\ \overline{e^{-j\omega n}} =e^{j\omega n} 共轭性\\ <x[n],e^{-j\omega n}> =\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} <x[n],ejωn>=n=x[n]ejωnejωn=ejωn共轭性<x[n],ejωn>=n=x[n]ejωn
其实就是DTFT函数,它的目的就是为了不同频率之间的影响。即如果 < x [ n ] , e − j ω k n > = ∑ n = − ∞ ∞ x [ n ] e − j ω k n = 0 <x[n],e^{-j\omega_k n}> =\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega_k n}=0 <x[n],ejωkn>=n=x[n]ejωkn=0,那么序列 x [ n ] x[n] x[n]对于频率 ω k \omega_k ωk没有影响。

3.DTFT左边边释义

1)实部与虚部

上文中解释了DTFT函数的由来,即 ∑ n = − ∞ ∞ x [ n ] e − j ω n \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} n=x[n]ejωn可以看作是对信号进行“投影”,找出信号与每个频率基函数的匹配程度。那么如果
< x [ n ] , e − j ω k n > = ∑ n = − ∞ ∞ x [ n ] e − j ω k n ≠ 0 <x[n],e^{-j\omega_k n}> =\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega_k n}\neq 0 <x[n],ejωkn>=n=x[n]ejωkn=0这个值我们表示为 X ( ω k ) X(\omega_k) X(ωk)有什么含义?或者说有什么作用?

我们知道对于欧拉公式:
e j θ = cos ⁡ ( θ ) + j sin ⁡ ( θ ) e^{j\theta}=\cos(\theta)+j\sin(\theta) ejθ=cos(θ)+jsin(θ)
它的实部表示了相位(两波之间的时间或空间偏移),虚部表示了幅度,那么对于DTFT公式:
X ( e j ω ) = ∑ n = − ∞ ∞ x [ n ] e − j ω n X(e^{j\omega})=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} X(e)=n=x[n]ejωn
其中复指数通过欧拉公式得到
e − j ω n = cos ⁡ ( ω n ) − j sin ⁡ ( ω n ) e^{-j\omega n}=\cos(\omega n)-j\sin(\omega n) ejωn=cos(ωn)jsin(ωn)
因此DTFT可以拆解为:
X ( e j ω ) = ∑ n = − ∞ ∞ x [ n ] ( cos ⁡ ( ω n ) − j sin ⁡ ( ω n ) ) X ( e j ω ) = ∑ n = − ∞ ∞ x [ n ] cos ⁡ ( ω n ) ⏟ R e ( X ( e j ω ) ) − ∑ n = − ∞ ∞ x [ n ] j sin ⁡ ( ω n ) ⏟ I e ( X ( e j ω ) ) X(e^{j\omega})=\sum_{n=-\infty}^{\infty}x[n](\cos(\omega n)-j\sin(\omega n)) \\ X(e^{j\omega})=\underbrace{\sum_{n=-\infty}^{\infty}x[n]\cos(\omega n)}_{Re(X(e^{j\omega}))}-\underbrace{\sum_{n=-\infty}^{\infty}x[n]j\sin(\omega n)}_{Ie(X(e^{j\omega}))} X(e)=n=x[n](cos(ωn)jsin(ωn))X(e)=Re(X(e)) n=x[n]cos(ωn)Ie(X(e)) n=x[n]jsin(ωn)

  • R e ( X ( e j ω ) Re(X(e^{j\omega}) Re(X(e)是实部
  • I m ( X ( e j ω ) Im(X(e^{j\omega}) Im(X(e)是虚部

2)幅度与相位

  • 幅度:幅度是频谱中每个频率分量的强度或大小,实部和虚部的模长,可以得出该频率分量的幅度。使用 ∣ X ( e j ω ) ∣ |X(e^{j\omega})| X(e)表示信号在频率 ω \omega ω处的能量强度或振幅
    ∣ X ( e j ω ) ∣ = R e ( X ( e j ω ) 2 + I m ( X ( e j ω ) 2 |X(e^{j\omega})|=\sqrt{Re(X(e^{j\omega})^2+Im(X(e^{j\omega})^2} X(e)=Re(X(e)2+Im(X(e)2
  • 相位:相位是频谱中每个频率分量相对于其他频率分量的相位偏移,通过实部和虚部的比值,可以计算相位。使用 arg ⁡ ( X ( e j ω ) ) 或 ∠ ( X ( e j ω ) ) \arg(X(e^{j\omega}))或\angle(X(e^{j\omega})) arg(X(e))(X(e))表示:
    ∠ ( X ( e j ω ) ) = tan ⁡ − 1 I m ( X ( e j ω ) R e ( X ( e j ω ) \angle(X(e^{j\omega}))=\tan^{-1}\frac{Im(X(e^{j\omega})}{Re(X(e^{j\omega})} (X(e))=tan1Re(X(e)Im(X(e)

二、IDTFT

1.逆离散时间的傅里叶变换

上文中我们使用的傅里叶变换将序列从时域转成了频域,那么从频域恢复到时域我们成为逆傅里叶变换,逆离散时间的傅里叶变换表示为IDTFT。
在这里插入图片描述
它的公式为:
x [ n ] = 1 2 π ∫ − π π X ( e j ω ) e j ω n d ω x[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j\omega})e^{j\omega n}d\omega x[n]=2π1ππX(e)ejωndω

2.IDTFT验证

我们将 X ( e j ω ) X(e^{j\omega}) X(e)代入到公式中:
x [ n ] = 1 2 π ∫ − π π ( ∑ k = − ∞ ∞ x [ k ] e − j ω k ) e j ω n d ω x[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}\big(\sum_{k=-\infty}^{\infty}x[k]e^{-j\omega k}\big)e^{j\omega n}d\omega x[n]=2π1ππ(k=x[k]ejωk)ejωndω
根据之前文章积分和求和的特性
x [ n ] = ∑ k = − ∞ ∞ x [ k ] ( 1 2 π ∫ − π π e − j ω ( n − k ) d w ) x[n]=\sum_{k=-\infty}^{\infty}x[k]\big(\frac{1}{2\pi}\int_{-\pi}^{\pi}e^{-j\omega (n-k)}dw\big) x[n]=k=x[k](2π1ππe(nk)dw)
先看积分项
1 2 π ∫ − π π e − j ω ( n − k ) d w \frac{1}{2\pi}\int_{-\pi}^{\pi}e^{-j\omega (n-k)}dw 2π1ππe(nk)dw

  • k = n k=n k=n时:
    1 2 π ∫ − π π e − j ω ( n − k ) d w = 1 2 π ∫ − π π 1 d w = 1 \frac{1}{2\pi}\int_{-\pi}^{\pi}e^{-j\omega (n-k)}dw=\frac{1}{2\pi}\int_{-\pi}^{\pi}1dw=1 2π1ππe(nk)dw=2π1ππ1dw=1
  • k ≠ n k\neq n k=n时,上文中说过,因为 e j ( ω m − ω l ) n e^{j(\omega_m-\omega_l)n} ej(ωmωl)n表示的是一个周期性复数,其积分结果为零:
    1 2 π ∫ − π π e − j ω ( n − k ) d w = 1 2 π ∗ 0 = 0 \frac{1}{2\pi}\int_{-\pi}^{\pi}e^{-j\omega (n-k)}dw=\frac{1}{2\pi}*0=0 2π1ππe(nk)dw=2π10=0

因此
1 2 π ∫ − π π e − j ω ( n − k ) d w = { 1 , n = k 0 , n ≠ k \frac{1}{2\pi}\int_{-\pi}^{\pi}e^{-j\omega (n-k)}dw=\begin{cases}1,\quad n=k \\ 0,\quad n\neq k\end{cases} 2π1ππe(nk)dw={1,n=k0,n=k
我们用单位脉冲 δ \delta δ表示0,1,所以可以得到
x [ n ] = ∑ k = − ∞ ∞ x [ k ] δ [ n − k ] x[n]=\sum_{k=-\infty}^{\infty}x[k]\delta[n-k] x[n]=k=x[k]δ[nk]
有没有看起来很熟悉,这不就是冲激分解,使用单位冲激序列表示的加权和


总结

本篇文章中,我们对于DTFT做了深入的了解,附带着介绍了一些使用的数学知识,同时得到了IDTFT的公式。受到篇幅限制,本章只对DTFT公式进行了展示,并没有深入了解DTFT存在的条件和性质,那么在下一篇文章中会进行进一步介绍DTFT相关性质和条件。

如果对您有所帮助,请帮忙点个赞吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2271074.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Leecode】Leecode刷题之路第99天之恢复二叉搜索树

题目出处 99-恢复二叉搜索树-题目出处 题目描述 个人解法 思路&#xff1a; todo代码示例&#xff1a;&#xff08;Java&#xff09; todo复杂度分析 todo官方解法 99-恢复二叉搜索树-官方解法 方法1&#xff1a;显式中序遍历 思路&#xff1a; 代码示例&#xff1a;&…

利用AI优化SEO提升关键词排名的有效策略

内容概要 随着数字化时代的到来&#xff0c;搜索引擎优化&#xff08;SEO&#xff09;在各类企业的在线营销战略中占据了越来越重要的位置。而人工智能&#xff08;AI&#xff09;技术的迅速发展为SEO带来了新的机遇和挑战。通过智能化的数据分析和智能内容生成&#xff0c;企…

YOLO分割数据集转化(json转TXT)

一、数据集转化 import json import os from tqdm import tqdm import glob import os.path as ospdef json_to_txt(jsonfilePath, resultDirPath):"""jsonfilePath: labelme标注好的*.json文件所在文件夹resultDirPath: 转换好后的*.txt保存文件夹""…

中建海龙:科技助力福城南产业片区绿色建筑发展

在快速发展的城市化进程中&#xff0c;绿色建筑以其环保、节能、可持续的特点日益受到重视。作为建筑工业化领域的领军企业&#xff0c;中建海龙科技有限公司&#xff08;简称“中建海龙”&#xff09;凭借其卓越的科技实力和创新举措&#xff0c;在推动绿色建筑发展方面做出了…

基于深度学习算法的AI图像视觉检测

基于人工智能和深度学习方法的现代计算机视觉技术在过去10年里取得了显著进展。如今&#xff0c;它被广泛用于图像分类、人脸识别、图像中物体的识别等。那么什么是深度学习&#xff1f;深度学习是如何应用在视觉检测上的呢&#xff1f; 什么是深度学习&#xff1f; 深度学习是…

大数据技术-Hadoop(四)Yarn的介绍与使用

目录 一、Yarn 基本结构 1、Yarn基本结构 2、Yarn的工作机制 二、Yarn常用的命令 三、调度器 1、Capacity Scheduler&#xff08;容量调度器&#xff09; 1.1、特点 1.2、配置 1.2.1、yarn-site.xml 1.2.2、capacity-scheduler.xml 1.3、重启yarn、刷新队列 测试 向hi…

python修改ppt中的文字部分及插入图片

批量修改ppt中的某个模块&#xff0c;或者批量制作奖状等场景会用到&#xff1b; import os import pandas as pd from pptx import Presentation from pptx.util import Inchesfilepath/Users/kangyongqing/Documents/kangyq/202303/分析模版/批量制作/file1时段预警_副本.pp…

数据库新建用户后(Host:%),报错:localhost无法连接

存在问题 在给数据库&#xff08;MySQL、MariaDB等&#xff09;创建了新的用户名&#xff08;eg&#xff1a;maxscale&#xff09;后&#xff0c;无法使用新用户名登录&#xff0c;并报如下错误&#xff1a;ERROR 1045 (28000): Access denied for user maxscalelocalhost (us…

《机器学习》——逻辑回归(下采样)

文章目录 什么是下采样&#xff1f;为什么在逻辑回归中要使用下采样&#xff1f;使用下采样和不使用下采样的区别实例1、实例内容2、实例步骤 什么是下采样&#xff1f; 下采样&#xff08;Down - Sampling&#xff09;是一种数据处理技术&#xff0c;主要用于处理数据集中不同…

ACM算法模板

ACM算法模板 起手式基础算法前缀和与差分二分查找三分查找求极值分治法&#xff1a;归并排序 动态规划基本线性 d p dp dp最长上升子序列I O ( n 2 ) O(n ^ 2) O(n2)最长上升子序列II O ( n l o g n ) O(nlogn) O(nlogn) 贪心二分最长公共子序列 背包背包求组合种类背包求排列…

Scala_【5】函数式编程

第五章 函数式编程函数和方法的区别函数声明函数参数可变参数参数默认值 函数至简原则匿名函数高阶函数函数作为值传递函数作为参数传递函数作为返回值 函数闭包&柯里化函数递归控制抽象惰性函数友情链接 函数式编程 面向对象编程 解决问题时&#xff0c;分解对象&#xff…

CSS 学习之正确看待 CSS 世界里的 margin 合并

一、什么是 margin 合并 块级元素的上外边距(margin-top)与下外边距(margin-bottom)有时会合并为单个外边距&#xff0c;这样的现象称为“margin 合并”。从此定义上&#xff0c;我们可以捕获两点重要的信息。 块级元素&#xff0c;但不包括浮动和绝对定位元素&#xff0c;尽…

Golang的代码质量分析工具

Golang的代码质量分析工具 一、介绍 作为一种高效、简洁、可靠的编程语言&#xff0c;被越来越多的开发者所喜爱和采用。而随着项目规模的增长和团队人员的扩大&#xff0c;代码质量的管理变得尤为重要。为了保障代码的可维护性、健壮性和可扩展性&#xff0c;我们需要借助代码…

鸿蒙元服务 口袋管家(从0到1) ——准备工作

达到的效果图 如何创建元服务&#xff1f; 如下&#xff1a; 鸿蒙如何创建元服务-元服务是什么&#xff1f;和App的关系&#xff1f;&#xff08;保姆级步骤&#xff09;_鸿蒙元服务-CSDN博客 开始创建包 Bill 里面创建两个page页面 分别是 BillAddPage 和 BillIndexPag…

轻量型web组态软件

体验地址&#xff1a;http://www.hcy-soft.com 随着互联网、物联网技术的快速发展&#xff0c;BY组态基于多年研发积累和私有部署实践打磨、以及对业务场景的深入理解&#xff0c;推出了适用于物联网应用场景的轻量型web组态软件。 该产品采用 B/S 架构&#xff0c;提供 web …

Linux C/C++编程-获得套接字地址、主机名称和主机信息

【图书推荐】《Linux C与C一线开发实践&#xff08;第2版&#xff09;》_linux c与c一线开发实践pdf-CSDN博客《Linux C与C一线开发实践&#xff08;第2版&#xff09;&#xff08;Linux技术丛书&#xff09;》(朱文伟&#xff0c;李建英)【摘要 书评 试读】- 京东图书 (jd.com…

SweetAlert2 - 漂亮可定制的 JavaScript 弹窗

https://sweetalert2.github.io/ https://github.com/sweetalert2/sweetalert2 安装&#xff1a; npm install sweetalert2封装&#xff1a; import Swal from sweetalert2/dist/sweetalert2.js import sweetalert2/src/sweetalert2.scss/*** * param {string} icon - ico…

Android布局layout的draw简洁clipPath实现圆角矩形布局,Kotlin

Android布局layout的draw简洁clipPath实现圆角矩形布局&#xff0c;Kotlin 通常&#xff0c;如果要把一个相对布局&#xff0c;FrameLayout&#xff0c;或者线性布局等这样的布局变成具有圆角或者圆形的布局&#xff0c;需要增加一个style&#xff0c;给它设置圆角&#xff0c;…

PHP如何删除数组中的特定值?

php 中删除数组特定值的方法有三种&#xff1a;unset()&#xff1a;直接删除指定索引的值&#xff0c;但会保留数组索引结构和未删除元素&#xff0c;适合小数组。array_filter()&#xff1a;根据自定义回调函数筛选数组元素&#xff0c;返回一个新数组&#xff0c;原数组不变&…

啤酒风味塑造的关键因素——麦汁煮沸

在探索啤酒酿造的工艺过程中&#xff0c;我们发现每一个细微的步骤都对最终的口感和风味产生着不可忽视的影响。今天&#xff0c;让我们深入探讨一个关键环节——麦汁煮沸&#xff0c;以及其中至关重要的概念“煮沸强度”。 何谓煮沸强度&#xff1f;它又如何左右麦汁的品质&a…