本文介绍了7个Python爬虫小案例,包括爬取豆瓣电影Top250、猫眼电影Top100、全国高校名单、中国天气网、当当网图书、糗事百科段子和新浪微博信息,帮助读者理解并实践Python爬虫基础知识。
-
包含编程资料、学习路线图、源代码、软件安装包等!【[点击这里]】!
在文章开始之前先给大家简单介绍一下python爬虫
一、什么是爬虫?
1.简单介绍爬虫
爬虫的全称为网络爬虫,简称爬虫,别名有网络机器人,网络蜘蛛等等。
网络爬虫是一种自动获取网页内容的程序,为搜索引擎提供了重要的数据支撑。搜索引擎通过网络爬虫技术,将互联网中丰富的网页信息保存到本地,形成镜像备份。我们熟悉的谷歌、百度本质上也可理解为一种爬虫。
如果形象地理解,爬虫就如同一只机器蜘蛛,它的基本操作就是模拟人的行为去各个网站抓取数据或返回数据。
2.爬虫的工作原理
下图是一个网络爬虫的基本框架:
二、python爬虫能干什么?
python爬虫就是模拟浏览器打开网页,获取网页中想要的那部分数据。利用爬虫我们可以抓取商品信息、评论及销量数据;可以抓取房产买卖及租售信息;可以抓取各类职位信息等。
利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:爬取知乎优质答案,为你筛选出各话题下最优质的内容。抓取淘宝、京东商品、评论及销量数据,对各种商品及用户的消费场景进行分析。
抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。爬取各类职位信息,分析各行业人才需求情况及薪资水平。爬虫的本质:爬虫的本质就是模拟浏览器打开网页,获取网页中我们想要的那部分数据。
三、Python7个爬虫小案例
下面我将分享7个Python爬虫的小案例,帮助大家更好地学习和了解Python爬虫的基础知识。以下是每个案例的简介和源代码:
1. 爬取豆瓣电影Top250
这个案例使用BeautifulSoup库爬取豆瓣电影Top250的电影名称、评分和评价人数等信息,并将这些信息保存到CSV文件中。
import requests
from bs4 import BeautifulSoup
import csv
# 请求URL
url = '<https://movie.douban.com/top250>'
# 请求头部
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
}
# 解析页面函数
def parse_html(html):
soup = BeautifulSoup(html, 'lxml')
movie_list = soup.find('ol', class_='grid_view').find_all('li')
for movie in movie_list:
title = movie.find('div', class_='hd').find('span', class_='title').get_text()
rating_num = movie.find('div', class_='star').find('span', class_='rating_num').get_text()
comment_num = movie.find('div', class_='star').find_all('span')[-1].get_text()
writer.writerow([title, rating_num, comment_num])
# 保存数据函数``def save_data():
f = open('douban_movie_top250.csv', 'a', newline='', encoding='utf-8-sig')
global writer
writer = csv.writer(f)
writer.writerow(['电影名称', '评分', '评价人数'])
for i in range(10):
url = '<https://movie.douban.com/top250?start=>' + str(i*25) + '&filter='
response = requests.get(url, headers=headers)
parse_html(response.text)
f.close()
if __name__ == '__main__':
save_data()
2. 爬取猫眼电影Top100
这个案例使用正则表达式和requests库爬取猫眼电影Top100的电影名称、主演和上映时间等信息,并将这些信息保存到TXT文件中。
import requests
import re
# 请求URL
url = '<https://maoyan.com/board/4>'
# 请求头部
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
}
# 解析页面函数
def parse_html(html):
pattern = re.compile('<p class="name"><a href=".*?" title="(.*?)" data-act="boarditem-click" data-val="{movieId:\\d+}">(.*?)</a></p>.*?<p class="star">(.*?)</p>.*?<p class="releasetime">(.*?)</p>', re.S)
items = re.findall(pattern, html)
for item in items:
yield {
'电影名称': item[1],
'主演': item[2].strip(),
'上映时间': item[3]
}
# 保存数据函数
def save_data():
f = open('maoyan_top100.txt', 'w', encoding='utf-8')
for i in range(10):
url = '<https://maoyan.com/board/4?offset=>' + str(i*10)
response = requests.get(url, headers=headers)
for item in parse_html(response.text):
f.write(str(item) + '\
')
f.close()
if name == ‘main’:
save_data()
3. 爬取全国高校名单
这个案例使用正则表达式和requests库爬取全国高校名单,并将这些信息保存到TXT文件中。
import requests
import re
# 请求URL
url = '<http://www.zuihaodaxue.com/zuihaodaxuepaiming2019.html>'
# 请求头部
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
}
# 解析页面函数
def parse_html(html):
pattern = re.compile('<tr class="alt">.*?<td>(.*?)</td>.*?<td><div align="left">.*?<a href="(.*?)" target="_blank">(.*?)</a></div></td>.*?<td>(.*?)</td>.*?<td>(.*?)</td>.*?</tr>', re.S)
items = re.findall(pattern, html)
for item in items:
yield {
'排名': item[0],
'学校名称': item[2],
'省市': item[3],
'总分': item[4]
}
# 保存数据函数
def save_data():
f = open('university_top100.txt', 'w', encoding='utf-8')
response = requests.get(url, headers=headers)
for item in parse_html(response.text):
f.write(str(item) + '\
')
f.close()
if name == ‘main’:
save_data()
4. 爬取中国天气网城市天气
这个案例使用xpath和requests库爬取中国天气网的城市天气,并将这些信息保存到CSV文件中。
4. 爬取中国天气网城市天气``这个案例使用xpath和requests库爬取中国天气网的城市天气,并将这些信息保存到CSV文件中。
5. 爬取当当网图书信息
这个案例使用xpath和requests库爬取当当网图书信息,并将这些信息保存到CSV文件中。
import requests
from lxml import etree
import csv
# 请求URL
url = '<http://search.dangdang.com/?key=Python&act=input>'
# 请求头部
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
}
# 解析页面函数``def parse_html(html):
selector = etree.HTML(html)
book_list = selector.xpath('//*[@id="search_nature_rg"]/ul/li')
for book in book_list:
title = book.xpath('a/@title')[0]
link = book.xpath('a/@href')[0]
price = book.xpath('p[@class="price"]/span[@class="search_now_price"]/text()')[0]
author = book.xpath('p[@class="search_book_author"]/span[1]/a/@title')[0]
publish_date = book.xpath('p[@class="search_book_author"]/span[2]/text()')[0]
publisher = book.xpath('p[@class="search_book_author"]/span[3]/a/@title')[0]
yield {
'书名': title,
'链接': link,
'价格': price,
'作者': author,
'出版日期': publish_date,
'出版社': publisher
}
# 保存数据函数
def save_data():
f = open('dangdang_books.csv', 'w', newline='', encoding='utf-8-sig')
writer = csv.writer(f)
writer.writerow(['书名', '链接', '价格', '作者', '出版日期', '出版社'])
response = requests.get(url, headers=headers)
for item in parse_html(response.text):
writer.writerow(item.values())
f.close()
if __name__ == '__main__':
save_data()
6. 爬取糗事百科段子
这个案例使用xpath和requests库爬取糗事百科的段子,并将这些信息保存到TXT文件中。
import requests
from lxml import etree
# 请求URL
url = '<https://www.qiushibaike.com/text/>'
# 请求头部
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
}
# 解析页面函数``def parse_html(html):
selector = etree.HTML(html)
content_list = selector.xpath('//div[@class="content"]/span/text()')
for content in content_list:
yield content
# 保存数据函数
def save_data():
f = open('qiushibaike_jokes.txt', 'w', encoding='utf-8')
for i in range(3):
url = '<https://www.qiushibaike.com/text/page/>' + str(i+1) + '/'
response = requests.get(url, headers=headers)
for content in parse_html(response.text):
f.write(content + '\
')
f.close()
if name == ‘main’:
save_data()
7. 爬取新浪微博
这个案例使用selenium和requests库爬取新浪微博,并将这些信息保存到TXT文件中。
import time
from selenium import webdriver
import requests
# 请求URL
url = '<https://weibo.com/>'
# 请求头部
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
}
# 解析页面函数
def parse_html(html):
print(html)
# 保存数据函数
def save_data():
f = open('weibo.txt', 'w', encoding='utf-8')
browser = webdriver.Chrome()
browser.get(url)
time.sleep(10)
browser.find_element_by_name('username').send_keys('username')
browser.find_element_by_name('password').send_keys('password')
browser.find_element_by_class_name('W_btn_a').click()
time.sleep(10)
response = requests.get(url, headers=headers, cookies=browser.get_cookies())
parse_html(response.text)
browser.close()
f.close()
if __name__ == '__main__':
save_data()
希望这7个小案例能够帮助大家更好地掌握Python爬虫的基础知识!
最后
如果你也想学习Python,可以关注我,我会把自己知道的,曾经走过的弯路都告诉你,让你在学习Python的路上更加顺畅。
我自己也整理了一套最新的Python系统学习教程,包括从基础的python脚本到web开发、爬虫、数据分析、数据可视化、机器学习等。如果你也喜欢编程,想通过学习Python转行、做副业或者提升工作效率,这份【最新全套Python学习资料】 一定对你有用!
包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习、Python量化交易等学习教程。带你从零基础系统性的学好Python!编程资料、学习路线图、源代码、软件安装包等!
-
包含编程资料、学习路线图、源代码、软件安装包等!【[点击这里]】!
① Python所有方向的学习路线图
,清楚各个方向要学什么东西
② 100多节Python课程视频
,涵盖必备基础、爬虫和数据分析
③ 100多个Python实战案例
,学习不再是只会理论
④ 华为出品独家Python漫画教程
,手机也能学习
⑤ 历年互联网企业Python面试真题
,复习时非常方便****