1:unet_parts.py
主要包含:
【1】double conv,双层卷积
【2】down,下采样
【3】up,上采样
【4】out conv,输出卷积
""" Parts of the U-Net model """
import torch
import torch.nn as nn
import torch.nn.functional as F
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels, mid_channels=None):
super().__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
# if bilinear, use the normal convolutions to reduce the number of channels
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
else:
# // 是整除运算
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
# input is CHW
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
# if you have padding issues, see
# https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
# https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
【1】double conv
=》卷积。卷积核是3*3,填充是1
=》批归一化。
=》ReLU。激活函数
=》卷积。卷积核是3*3,填充是1
=》批归一化。
=》ReLU。激活函数
【2】down
=》最大池化。池化核是2*2
=》double conv。
【3】up
=》上采样。可选择upsample + double conv 和 transpose + double conv
=》计算尺寸差异。
=》填充x1。使得x1和x2对齐
=》拼接x2和x1。按照dim=1,也就是channel通道拼接
=》double conv。
【4】out conv
=》卷积。卷积核是1*1
2:unet_model.py
主要包含:UNet完整架构
""" Full assembly of the parts to form the complete network """
from .unet_parts import *
class UNet(nn.Module):
def __init__(self, n_channels, n_classes, bilinear=False):
super(UNet, self).__init__()
self.n_channels = n_channels
self.n_classes = n_classes
self.bilinear = bilinear
self.inc = (DoubleConv(n_channels, 64))
self.down1 = (Down(64, 128))
self.down2 = (Down(128, 256))
self.down3 = (Down(256, 512))
factor = 2 if bilinear else 1
self.down4 = (Down(512, 1024 // factor))
self.up1 = (Up(1024, 512 // factor, bilinear))
self.up2 = (Up(512, 256 // factor, bilinear))
self.up3 = (Up(256, 128 // factor, bilinear))
self.up4 = (Up(128, 64, bilinear))
self.outc = (OutConv(64, n_classes))
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
logits = self.outc(x)
return logits
def use_checkpointing(self):
self.inc = torch.utils.checkpoint(self.inc)
self.down1 = torch.utils.checkpoint(self.down1)
self.down2 = torch.utils.checkpoint(self.down2)
self.down3 = torch.utils.checkpoint(self.down3)
self.down4 = torch.utils.checkpoint(self.down4)
self.up1 = torch.utils.checkpoint(self.up1)
self.up2 = torch.utils.checkpoint(self.up2)
self.up3 = torch.utils.checkpoint(self.up3)
self.up4 = torch.utils.checkpoint(self.up4)
self.outc = torch.utils.checkpoint(self.outc)
其中,use_checkpointing的作用是丢弃中间计算结果,加快训练速度。
上面的代码可以结合下图分析
前向传播过程:
x1 = self.inc(x)
通过double conv双层卷积,输入通道为图像自身的,输出通道为64
x2 = self.down1(x1)
通过down下采样,输入通道为64,输出通道为128
x3 = self.down2(x2)
通过down下采样,输入通道为128,输出通道为256
x4 = self.down3(x3)
通过down下采样,输入通道为256,输出通道为512
x5 = self.down4(x4)
通过down下采样,输入通道为512,输出通道为1024(非bilinear,后续上采样也是如此)
x = self.up1(x5, x4)
通过up上采样,输入通道为1024,输出通道为512
这个地方concat的对象是x4,也就是下采样输出通道为512的时候的特征
x = self.up2(x, x3)
通过up上采样,输入通道为512,输出通道为256
这个地方concat的对象是x,也就是原图(后续也是原图)
其实这里和原作者的跳跃连接有点不太一样,代码库的作者直接省事用了原图进行拼接
x = self.up3(x, x2)
通过up上采样,输入通道为256,输出通道为128
x = self.up4(x, x1)
通过up上采样,输入通道为128,输出通道为64
logits = self.outc(x)
通过out conv输出卷积,输入通道为64,输出通道为2,也就是分割为背景和物体2个类别的像素
3:完整代码
可以在github上通过git clone下载
milesial/Pytorch-UNet: PyTorch implementation of the U-Net for image semantic segmentation with high quality images (github.com)