Pytorch | 利用SMI-FGRM针对CIFAR10上的ResNet分类器进行对抗攻击

news2025/2/12 22:20:21

Pytorch | 利用I-FGSSM针对CIFAR10上的ResNet分类器进行对抗攻击

  • CIFAR数据集
  • SMI-FGRM介绍
    • SMI-FGRM算法流程
  • SMI-FGRM代码实现
    • SMI-FGRM算法实现
    • 攻击效果
  • 代码汇总
    • smifgrm.py
    • train.py
    • advtest.py

之前已经针对CIFAR10训练了多种分类器:
Pytorch | 从零构建AlexNet对CIFAR10进行分类
Pytorch | 从零构建Vgg对CIFAR10进行分类
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
Pytorch | 从零构建ResNet对CIFAR10进行分类
Pytorch | 从零构建MobileNet对CIFAR10进行分类
Pytorch | 从零构建EfficientNet对CIFAR10进行分类
Pytorch | 从零构建ParNet对CIFAR10进行分类

也实现了一些攻击算法:
Pytorch | 利用FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用BIM/I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用MI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用NI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用PI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用VMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用VNI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用EMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用I-FGSSM针对CIFAR10上的ResNet分类器进行对抗攻击

本篇文章我们使用Pytorch实现SMI-FGRM对CIFAR10上的ResNet分类器进行攻击.

CIFAR数据集

CIFAR-10数据集是由加拿大高级研究所(CIFAR)收集整理的用于图像识别研究的常用数据集,基本信息如下:

  • 数据规模:该数据集包含60,000张彩色图像,分为10个不同的类别,每个类别有6,000张图像。通常将其中50,000张作为训练集,用于模型的训练;10,000张作为测试集,用于评估模型的性能。
  • 图像尺寸:所有图像的尺寸均为32×32像素,这相对较小的尺寸使得模型在处理该数据集时能够相对快速地进行训练和推理,但也增加了图像分类的难度。
  • 类别内容:涵盖了飞机(plane)、汽车(car)、鸟(bird)、猫(cat)、鹿(deer)、狗(dog)、青蛙(frog)、马(horse)、船(ship)、卡车(truck)这10个不同的类别,这些类别都是现实世界中常见的物体,具有一定的代表性。

下面是一些示例样本:
在这里插入图片描述

SMI-FGRM介绍

SMI-FGRM(Sampling-based Momentum Iterative Fast Gradient Rescaling Method)是一种基于采样的动量迭代快速梯度重缩放方法,用于提升对抗攻击的可迁移性。它在传统的MI-FGSM算法基础上,引入了数据重缩放和深度优先采样策略,以更准确地近似梯度方向,从而提高攻击效果。

SMI-FGRM算法流程

  1. 初始化
    • 设置步长 α = ϵ / T \alpha=\epsilon/T α=ϵ/T,其中 ϵ \epsilon ϵ 是最大扰动, T T T 是迭代次数。初始化对抗样本 x 0 a d v = x x^{adv}_0 = x x0adv=x,动量 g 0 = 0 g_0 = 0 g0=0
  2. 迭代过程( t = 0 t = 0 t=0 T − 1 T - 1 T1
    • 计算采样梯度 g ^ t + 1 \hat{g}_{t + 1} g^t+1
      • 根据深度优先采样方法(DFSM),在输入空间中对当前点的邻居进行采样,计算采样点和原始图像的平均梯度。具体公式为 g ^ t = 1 N + 1 ∑ i = 0 N ∇ J ( x t i , y ; θ ) \hat{g}_{t}=\frac{1}{N + 1} \sum_{i = 0}^{N} \nabla J\left(x_{t}^{i}, y ; \theta\right) g^t=N+11i=0NJ(xti,y;θ),其中 x t 0 = x x_{t}^{0}=x xt0=x ξ i ∼ U [ − ( β ⋅ ϵ ) d , ( β ⋅ ϵ ) d ] \xi_{i} \sim U[-(\beta \cdot \epsilon)^{d},(\beta \cdot \epsilon)^{d}] ξiU[(βϵ)d,(βϵ)d] N N N 是采样数量, β \beta β 是确定采样范围的超参数, ∇ J ( x t i , y ; θ ) \nabla J\left(x_{t}^{i}, y ; \theta\right) J(xti,y;θ) 是损失函数 J J J 关于输入 x t i x_{t}^{i} xti 的梯度。
    • 更新动量 g t + 1 g_{t + 1} gt+1
      • 使用计算得到的采样梯度 g ^ t + 1 \hat{g}_{t + 1} g^t+1 更新动量 g t + 1 g_{t + 1} gt+1,公式为 g t + 1 = μ g t + g ^ t + 1 ∥ g ^ t + 1 ∥ 1 g_{t + 1}=\mu g_{t}+\frac{\hat{g}_{t + 1}}{\left\|\hat{g}_{t + 1}\right\|_{1}} gt+1=μgt+g^t+11g^t+1,其中 μ \mu μ 是衰减因子。
    • 更新对抗样本 x t + 1 a d v x^{adv}_{t + 1} xt+1adv
      • 通过快速梯度重缩放方法(FGRM)计算梯度缩放后的扰动,更新对抗样本。具体为 x t + 1 a d v = x t a d v + α ⋅ r e s c a l e ( g t + 1 ) x^{adv}_{t + 1}=x^{adv}_{t}+\alpha \cdot rescale(g_{t + 1}) xt+1adv=xtadv+αrescale(gt+1),其中 r e s c a l e ( g ) rescale(g) rescale(g) 是梯度重缩放函数,定义为 r e s c a l e ( g ) = c ∗ s i g n ( g ) ⊙ f ( n o r m ( l o g 2 ∣ g ∣ ) ) rescale(g)=c * sign(g) \odot f\left(norm\left(log _{2}|g|\right)\right) rescale(g)=csign(g)f(norm(log2g)) n o r m ( x ) = x − m e a n ( x ) s t d ( x ) norm(x)=\frac{x - mean(x)}{std(x)} norm(x)=std(x)xmean(x) f ( x ) = σ = 1 1 + e − x f(x)=\sigma=\frac{1}{1 + e^{-x}} f(x)=σ=1+ex1 c c c 是重缩放因子。
  3. 返回结果
    • 迭代结束后,返回最终的对抗样本 x a d v = x T a d v x^{adv}=x^{adv}_T xadv=xTadv

SMI-FGRM代码实现

sampling_num=0 时,SMI-FGRM退化为MI-FGRM.

SMI-FGRM算法实现

import torch
import torch.nn as nn


def SMI_FGRM(model, criterion, original_images, labels, epsilon, num_iterations=10, decay=1, sampling_num=12, sampling_beta=1.5, rescale_c=2):
    """
    SMI-FGRM (Sampling-based Momentum Iterative Fast Gradient Rescaling Method)

    参数:
    - model: 要攻击的模型
    - criterion: 损失函数
    - original_images: 原始图像
    - labels: 原始图像的标签
    - epsilon: 最大扰动幅度
    - num_iterations: 迭代次数
    - decay: 动量衰减因子
    - sampling_num: 采样数量
    - sampling_beta: 采样范围参数
    - rescale_c: 重缩放因子
    """
    alpha = epsilon / num_iterations
    perturbed_images = original_images.clone().detach().requires_grad_(True)
    momentum = torch.zeros_like(original_images).detach().to(original_images.device)

    for _ in range(num_iterations):
        # 深度优先采样
        sampled_gradients = []
        x_i = perturbed_images.clone()
        for _ in range(sampling_num):
            xi = x_i + torch.randn_like(x_i) * (sampling_beta * epsilon)
            sampled_gradients.append(compute_gradient(model, criterion, xi, labels))
            x_i = xi
        sampled_gradients.append(compute_gradient(model, criterion, perturbed_images, labels))
        g_hat = torch.mean(torch.stack(sampled_gradients), dim=0)

        # 更新动量
        momentum = decay * momentum + g_hat / torch.sum(torch.abs(g_hat), dim=(1, 2, 3), keepdim=True)

        # 快速梯度重缩放
        rescaled_gradient = rescale_gradient(momentum, rescale_c)

        # 更新对抗样本
        perturbed_images = perturbed_images + alpha * rescaled_gradient
        perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)
        perturbed_images = perturbed_images.detach().requires_grad_(True)

    return perturbed_images


def rescale_gradient(g, c):
    """
    梯度重缩放函数

    参数:
    - g: 梯度
    - c: 重缩放因子
    """
    normed_log_gradient = (torch.log2(torch.abs(g)) - torch.mean(torch.log2(torch.abs(g)), dim=(1, 2, 3), keepdim=True)) / torch.std(torch.log2(torch.abs(g)), dim=(1, 2, 3), keepdim=True)
    sigmoid_applied = 1 / (1 + torch.exp(-normed_log_gradient))
    return c * torch.sign(g) * sigmoid_applied


def compute_gradient(model, criterion, x, labels):
    """
    计算梯度

    参数:
    - model: 模型
    - criterion: 损失函数
    - x: 输入图像
    - labels: 标签
    """
    x = x.clone().detach().requires_grad_(True)
    outputs = model(x)
    loss = criterion(outputs, labels)
    model.zero_grad()
    loss.backward()
    return x.grad.data

攻击效果

在这里插入图片描述

代码汇总

smifgrm.py

import torch
import torch.nn as nn


def SMI_FGRM(model, criterion, original_images, labels, epsilon, num_iterations=10, decay=1, sampling_num=12, sampling_beta=1.5, rescale_c=2):
    """
    SMI-FGRM (Sampling-based Momentum Iterative Fast Gradient Rescaling Method)

    参数:
    - model: 要攻击的模型
    - criterion: 损失函数
    - original_images: 原始图像
    - labels: 原始图像的标签
    - epsilon: 最大扰动幅度
    - num_iterations: 迭代次数
    - decay: 动量衰减因子
    - sampling_num: 采样数量
    - sampling_beta: 采样范围参数
    - rescale_c: 重缩放因子
    """
    alpha = epsilon / num_iterations
    perturbed_images = original_images.clone().detach().requires_grad_(True)
    momentum = torch.zeros_like(original_images).detach().to(original_images.device)

    for _ in range(num_iterations):
        # 深度优先采样
        sampled_gradients = []
        x_i = perturbed_images.clone()
        for _ in range(sampling_num):
            xi = x_i + torch.randn_like(x_i) * (sampling_beta * epsilon)
            sampled_gradients.append(compute_gradient(model, criterion, xi, labels))
            x_i = xi
        sampled_gradients.append(compute_gradient(model, criterion, perturbed_images, labels))
        g_hat = torch.mean(torch.stack(sampled_gradients), dim=0)

        # 更新动量
        momentum = decay * momentum + g_hat / torch.sum(torch.abs(g_hat), dim=(1, 2, 3), keepdim=True)

        # 快速梯度重缩放
        rescaled_gradient = rescale_gradient(momentum, rescale_c)

        # 更新对抗样本
        perturbed_images = perturbed_images + alpha * rescaled_gradient
        perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)
        perturbed_images = perturbed_images.detach().requires_grad_(True)

    return perturbed_images


def rescale_gradient(g, c):
    """
    梯度重缩放函数

    参数:
    - g: 梯度
    - c: 重缩放因子
    """
    normed_log_gradient = (torch.log2(torch.abs(g)) - torch.mean(torch.log2(torch.abs(g)), dim=(1, 2, 3), keepdim=True)) / torch.std(torch.log2(torch.abs(g)), dim=(1, 2, 3), keepdim=True)
    sigmoid_applied = 1 / (1 + torch.exp(-normed_log_gradient))
    return c * torch.sign(g) * sigmoid_applied


def compute_gradient(model, criterion, x, labels):
    """
    计算梯度

    参数:
    - model: 模型
    - criterion: 损失函数
    - x: 输入图像
    - labels: 标签
    """
    x = x.clone().detach().requires_grad_(True)
    outputs = model(x)
    loss = criterion(outputs, labels)
    model.zero_grad()
    loss.backward()
    return x.grad.data

train.py

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import ResNet18


# 数据预处理
transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

# 加载Cifar10训练集和测试集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)

# 定义设备(GPU或CPU)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 初始化模型
model = ResNet18(num_classes=10)
model.to(device)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

if __name__ == "__main__":
    # 训练模型
    for epoch in range(10):  # 可以根据实际情况调整训练轮数
        running_loss = 0.0
        for i, data in enumerate(trainloader, 0):
            inputs, labels = data[0].to(device), data[1].to(device)

            optimizer.zero_grad()

            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            running_loss += loss.item()
            if i % 100 == 99:
                print(f'Epoch {epoch + 1}, Batch {i + 1}: Loss = {running_loss / 100}')
                running_loss = 0.0

    torch.save(model.state_dict(), f'weights/epoch_{epoch + 1}.pth')
    print('Finished Training')

advtest.py

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import *
from attacks import *
import ssl
import os
from PIL import Image
import matplotlib.pyplot as plt

ssl._create_default_https_context = ssl._create_unverified_context

# 定义数据预处理操作
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.491, 0.482, 0.446), (0.247, 0.243, 0.261))])

# 加载CIFAR10测试集
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,
                                         shuffle=False, num_workers=2)

# 定义设备(GPU优先,若可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = ResNet18(num_classes=10).to(device)

criterion = nn.CrossEntropyLoss()

# 加载模型权重
weights_path = "weights/epoch_10.pth"
model.load_state_dict(torch.load(weights_path, map_location=device))


if __name__ == "__main__":
    # 在测试集上进行FGSM攻击并评估准确率
    model.eval()  # 设置为评估模式
    correct = 0
    total = 0
    epsilon = 16 / 255  # 可以调整扰动强度
    for data in testloader:
        original_images, labels = data[0].to(device), data[1].to(device)
        original_images.requires_grad = True
        
        attack_name = 'SMI-FGRM'
        if attack_name == 'FGSM':
            perturbed_images = FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'BIM':
            perturbed_images = BIM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'MI-FGSM':
            perturbed_images = MI_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'NI-FGSM':
            perturbed_images = NI_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'PI-FGSM':
            perturbed_images = PI_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'VMI-FGSM':
            perturbed_images = VMI_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'VNI-FGSM':
            perturbed_images = VNI_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'EMI-FGSM':
            perturbed_images = EMI_FGSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'AI-FGTM':
            perturbed_images = AI_FGTM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'I-FGSSM':
            perturbed_images = I_FGSSM(model, criterion, original_images, labels, epsilon)
        elif attack_name == 'SMI-FGRM':
            perturbed_images = SMI_FGRM(model, criterion, original_images, labels, epsilon)
        
        perturbed_outputs = model(perturbed_images)
        _, predicted = torch.max(perturbed_outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    accuracy = 100 * correct / total
    # Attack Success Rate
    ASR = 100 - accuracy
    print(f'Load ResNet Model Weight from {weights_path}')
    print(f'epsilon: {epsilon:.4f}')
    print(f'ASR of {attack_name} : {ASR :.2f}%')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2266321.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

少儿编程在线培训系统:客户服务与学习支持

2.1 VUE技术 VUE它是由HTML代码,配上嵌入在HTML代码里面的Java代码组成的应用于服务器端的语言,使用VUE进行开发能够更加容易区分网页逻辑以及网页设计内容,让程序员开发思路更加清晰化,VUE在设计组件时,它是可以重用的…

流批一体向量化计算引擎 Flex 在蚂蚁的探索和实践

编者按:Flex是蚂蚁数据部自研的一款流批一体的向量化引擎,Flex是Fink和Velox的全称,也是Flexible的前缀,被赋予了灵活可插拔的寓意。本文将重点从向量化技术背景、Flex架构方案和未来规划三个方面展开论述。 作者介绍:…

upload-labs关卡记录11

先上传一个一句话木马试试,居然可以上传成功,复制图片链接,在另一个窗口打开: 会发现,我们明明上传的是shell.php,但是这里就是没有了php,这样我们在执行我们相关的语句的时候就无法执行了: 就…

WebRTC服务质量(08)- 重传机制(05) RTX机制

WebRTC服务质量(01)- Qos概述 WebRTC服务质量(02)- RTP协议 WebRTC服务质量(03)- RTCP协议 WebRTC服务质量(04)- 重传机制(01) RTX NACK概述 WebRTC服务质量(…

借助 obdiag,让 OceanBase 参数和变量的对比更简单

本文将介绍 obdiag 工具中参数对比和变量对比功能的适用场景和试用方法。​​​​​​​ obdiag 参数和变量对比功能的适用场景 参数对比功能适用场景 不同observer对于同一参数允许配置不同的值,实际生产环境中,用户可能因多种原因在不同observer上为同…

Net9解决Spire.Pdf替换文字后,文件格式乱掉解决方法

官方文档 https://www.e-iceblue.com/Tutorials/Spire.PDF/Program-Guide/Text/Find-and-replace-text-on-PDF-document-in-C.html C# 在 PDF 中查找替换文本 原文件如下图,替换第一行的新编码,把41230441044替换为41230441000 替换代码如下&#xff…

VBA技术资料MF246:将工作表中形状复制到WORD文档

我给VBA的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的工作效率,而且可以提高数据的准确度。“VBA语言専攻”提供的教程一共九套,分为初级、中级、高级三大部分,教程是对VBA的系统讲解&#…

一次医院RIS系统的升级

2020-03-11 目录 数据库升级... 1 数据结构升级... 1 系统配置... 2 WEB服务器准备... 3 启动ASP.NET State Service服务... 3 检查IIS. 4 发布站点... 4 添加应用程序池... 4 发布网站... 5 处理打印模板... 6 web.config的配置... 6 处理图片文件目录... 6 修改W…

显示 Windows 任务栏

显示 Windows 任务栏 1. 取消勾选自动隐藏任务栏2. 重启 Windows 资源管理器References 1. 取消勾选自动隐藏任务栏 Windows 任务栏具有自动隐藏功能,不使用时自动隐藏,使用时显示。 鼠标右键单击桌面上的空白区域,个性化 -> 任务栏。不…

【Unity3D】Jobs、Burst并行计算裁剪Texture3D物体

版本:Unity2019.4.0f1 PackageManager下载Burst插件(1.2.3版本) 利用如下代码,生成一个Texture3D资源,它只能脚本生成,是一个32*32*32的立方体,导出路径记得改下,不然报错。 using UnityEditor; using Uni…

轻量级安全云存储方案Hoodik

什么是 Hoodik ? Hoodik 是一款轻量级、安全且自托管的云存储解决方案。它采用 Rust 和 Vue 设计和构建,专注于端到端加密,保护您的数据免受窥探和黑客的侵害。Hoodik 支持文件上传和下载,让您可以轻松地与其他用户共享文件。简单…

[WASAPI]音频API:从Qt MultipleMedia走到WASAPI,相似与不同

[WASAPI] 从Qt MultipleMedia 来看WASAPI 最近在学习有关Windows上的音频驱动相关的知识,在正式开始说WASAPI之前,我想先说一说Qt的Multiple Media,为什么呢?因为Qt的MultipleMedia实际上是WASAPI的一层封装,它在是线…

Linux 大文件管理与 Hugging Face 模型下载实践:解决磁盘空间与大文件传输的全攻略20241226

Linux 大文件管理与 Hugging Face 模型下载实践:解决磁盘空间与大文件传输的全攻略 引言 在 Linux 系统中管理大文件是一项常见但不容忽视的任务,尤其是在处理复杂场景时,比如磁盘空间不足、断点续传下载模型文件、管理日志文件等。通过实际…

TOGAF之架构标准规范-业务架构

TOGAF标准规范中,业务架构阶段的主要工作是开发支持架构愿景的业务架构。 如上所示,业务架构(Business Architecture)在TOGAF标准规范中处于B阶段,该阶段的主要内容包括阶段目标、阶段输入、流程步骤、架构方法。 阶段…

aPaaS是什么?有何特点?以及aPaaS核心优势有哪些?

​aPaaS是什么? aPaaS,Application Platform as aService,应用程序平台即服务。国际知名咨询机构 Gartner 对aPaaS所下的定义是:“这是基于PaaS(平台即服务)的一种解决方案,支持应用程序在云端的开发、部署和运行&…

【网络分析工具】WireShark的使用(超详细)

网络分析工具——WireShark的使用 简介WireShark软件安装Wireshark 开始抓包示例WireShark抓包界面WireShark 主要分为这几个界面TCP包的具体内容Wireshark过滤器设置wireshark过滤器表达式的规则Wireshark抓包分析TCP三次握手Wireshark分析常用操作 简介 WireShark是非常流…

前端js验证码插件

相关代码,在最上方的绑定资源

URDF文件中inertial数据的描述坐标系说明

这件事的来源是这样的:结构手动把连杆坐标系下描述的惯性张量数据写入了urdf中,给我到以后发现有问题,给我搞懵了,以为我错了这么多年,于是有了本次的深度调研,先上结论,感兴趣的可以参考后文。…

宠物行业的出路:在爱与陪伴中寻找增长新机遇

在当下的消费市场中,如果说有什么领域能够逆势而上,宠物行业无疑是一个亮点。当人们越来越注重生活品质和精神寄托时,宠物成为了许多人的重要伴侣。它们不仅仅是家庭的一员,更是情感的寄托和生活的调剂。然而,随着行业…

Web前端基础知识(三)

表单的应用非常丰富&#xff0c;可以说&#xff0c;每个网站都会用到表单。下面首先介绍表单中的form标签。 --------------------------------------------------------------------------------------------------------------------------------- <form></form&g…