K8s HPA的常用功能介绍

news2024/12/20 20:05:41

Kubernetes 的 Horizontal Pod Autoscaler (HPA) 是一种自动扩展功能,用于根据资源使用情况(如 CPU、内存等)或自定义指标,动态调整 Pod 的副本数量,从而保证应用的性能和资源利用率。

以下是 HPA 的常用功能介绍:


1. 自动伸缩 (Auto Scaling)

HPA 的核心功能是根据指标动态调整应用的 Pod 副本数。其伸缩规则基于设定的目标指标,自动增加或减少 Pod 数量,从而满足应用负载的变化需求。

  • 扩容:当资源使用量超出设定的目标时,HPA 增加 Pod 副本数。
  • 缩容:当资源使用量低于目标时,HPA 减少 Pod 副本数,节省资源。

2. 基于 CPU/内存的扩缩容

HPA 最常见的应用场景是基于 CPU 或内存的使用率:

  • CPU 使用率:例如,将目标 CPU 使用率设为 50%,当实际使用率超过 50% 时,HPA 会扩容,直到使用率恢复到目标值以下。
  • 内存使用率:类似的,基于内存使用率调整 Pod 的副本数。

配置示例:

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: my-app-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: my-app
  minReplicas: 2
  maxReplicas: 10
  metrics:
    - type: Resource
      resource:
        name: cpu
        target:
          type: Utilization
          averageUtilization: 50

3. 基于自定义指标 (Custom Metrics)

除了 CPU 和内存,HPA 还可以使用自定义指标(Custom Metrics)作为扩缩容的依据。例如:

  • 请求速率(如 QPS 或 RPS)。
  • 消息队列长度(如 Kafka、RabbitMQ 中的未处理消息数)。
  • 业务指标(如订单数量、活跃用户数)。

配置示例:

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: custom-metrics-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: custom-app
  minReplicas: 3
  maxReplicas: 15
  metrics:
    - type: Pods
      pods:
        metric:
          name: custom_metric_requests
        target:
          type: AverageValue
          averageValue: 100

要实现自定义指标,需要使用 Kubernetes 的 Custom Metrics API,并配置监控工具(如 Prometheus + Adapter)。


4. 多指标扩缩容 (Multiple Metrics)

HPA 支持使用多个指标进行扩缩容决策。例如,基于 CPU 和自定义业务指标同时监控,满足任何一个条件都会触发扩缩容。

配置示例:

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: multi-metrics-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: multi-app
  minReplicas: 1
  maxReplicas: 20
  metrics:
    - type: Resource
      resource:
        name: cpu
        target:
          type: Utilization
          averageUtilization: 60
    - type: Pods
      pods:
        metric:
          name: custom_metric_latency
        target:
          type: AverageValue
          averageValue: 200

5. 动态最小/最大副本数

HPA 支持根据负载动态调整副本数,但需要明确设定:

  • 最小副本数 (minReplicas):保证服务在负载低时不会缩容到 0,确保高可用。
  • 最大副本数 (maxReplicas):防止因负载异常导致的过度扩容,保护集群资源。

6. 支持 VPA 与 HPA 的组合使用

虽然 HPA 负责横向扩展(调整 Pod 数量),但 Kubernetes 还提供 Vertical Pod Autoscaler (VPA),用于纵向扩展(调整单个 Pod 的资源限制)。两者可以结合使用:

  • HPA 动态调整 Pod 数量。
  • VPA 动态调整 Pod 的资源分配(如 CPU 和内存限制)。

7. 适配不同的工作负载

HPA 可以应用于多种工作负载类型,包括:

  • Deployment(常见应用工作负载)。
  • ReplicaSet(控制特定版本的副本数)。
  • StatefulSet(有状态应用)。
  • Job 和 CronJob(扩缩容运行的任务)。

8. 冷却时间 (Cooldown Time)

HPA 通过 --horizontal-pod-autoscaler-downscale-stabilization 和其他参数,设置扩容和缩容的稳定时间,避免频繁扩缩容导致的不稳定。


9. 与监控工具集成

HPA 通常依赖监控系统提供指标数据,例如:

  • Kubernetes Metrics Server(默认支持 CPU 和内存)。
  • Prometheus(结合 Prometheus Adapter 支持自定义指标)。
  • Datadog、New Relic 等云监控工具

10. HPA 限制和注意事项

  • 指标延迟:采集和响应指标存在一定延迟。
  • 最低副本数:HPA 不支持将 minReplicas 设置为 0,需结合 Kubernetes 的 CronJob 或 Knative 实现零实例。
  • 资源预留:确保节点有足够的资源分配新 Pod,避免扩容失败。

总结

HPA 是 Kubernetes 集群中高效、灵活的扩展机制,通过动态调整 Pod 副本数来应对负载变化,保障应用性能。结合自定义指标、监控工具和资源管理,HPA 能帮助开发团队实现更高效的资源利用和服务稳定性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2262887.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深度学习之超分辨率算法——SRGAN

更新版本 实现了生成对抗网络在超分辨率上的使用 更新了损失函数,增加先验函数 SRresnet实现 import torch import torchvision from torch import nnclass ConvBlock(nn.Module):def __init__(self, kernel_size3, stride1, n_inchannels64):super(ConvBlock…

集成方案 | Docusign + 金蝶云,实现合同签署流程自动化!

本文将详细介绍 Docusign 与金蝶云的集成步骤及其效果,并通过实际应用场景来展示 Docusign 的强大集成能力,以证明 Docusign 集成功能的高效性和实用性。 在当今商业环境中,流程的无缝整合与数据的实时性对于企业的成功至关重要。金蝶云&…

数据结构----链表头插中插尾插

一、链表的基本概念 链表是一种线性数据结构,它由一系列节点组成。每个节点包含两个主要部分: 数据域:用于存储数据元素,可以是任何类型的数据,如整数、字符、结构体等。指针域:用于存储下一个节点&#…

Service Discovery in Microservices 客户端/服务端服务发现

原文链接 Client Side Service Discovery in Microservices - GeeksforGeeks 原文链接 Server Side Service Discovery in Microservices - GeeksforGeeks 目录 服务发现介绍 Server-Side 服务发现 实例: Client-Side 服务发现 实例: 服务发现介绍…

Git连接远程仓库(超详细)

目录 一、Gitee 远程仓库连接 1. HTTPS 方式 2. SSH公钥方式 (1)账户公钥 (2)仓库公钥 仓库的 SSH Key 和账户 SSH Key 的区别?​ 二、GitHub远程仓库连接 1. HTTPS方式 2.SSH公钥方式 本文将介绍如何通过 H…

系列4:基于Centos-8.6 Kubernetes多网卡节点Calico选择网卡配置

每日禅语 不动心”是一个人修养和定力的体现,若一个人心无定力,就会被外界环境左右,随外界的境遇而动摇。佛家认为,心是一切的基础,一个人如果想要真正入定,必须先从修心开始。修心即是净心,心灵…

Docker:Dockerfile(补充四)

这里写目录标题 1. Dockerfile常见指令1.1 DockerFile例子 2. 一些其他命令 1. Dockerfile常见指令 简单的dockerFile文件 FROM openjdk:17LABEL authorleifengyangCOPY app.jar /app.jarEXPOSE 8080ENTRYPOINT ["java","-jar","/app.jar"]# 使…

98. 验证二叉搜索树(java)

题目描述: 给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下: 节点的左 子树 只包含 小于 当前节点的数。节点的右子树只包含 大于 当前节点的数。所有左子树和右子树自身必须也是二叉搜索树。 …

微软 Phi-4:小型模型的推理能力大突破

在人工智能领域,语言模型的发展日新月异。微软作为行业的重要参与者,一直致力于推动语言模型技术的进步。近日,微软推出了最新的小型语言模型 Phi-4,这款模型以其卓越的复杂推理能力和在数学领域的出色表现,引起了广泛…

libaom 源码分析:熵编码模块介绍

AV1 熵编码原理介绍 关于AV1 熵编码原理介绍可以参考:AV1 编码标准熵编码技术概述libaom 熵编码相关源码介绍 函数流程图 核心函数介绍 av1_pack_bitstream 函数:该函数负责将编码后的数据打包成符合 AV1 标准的比特流格式;包括写入序列头 OBU 的函数 av1_write_obu_header…

JAVA基于百度AI人脸识别签到考勤系统(开题报告+作品+论文)

博主介绍:黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育、辅导。 所有项目都配有从入门到精通的基础知识视频课程&#xff…

go 中使用redis 基础用法

1、安装redis 参考链接:https://www.codeleading.com/article/98554130215/ 1.1 查看是否有redis yum 源 yum install redis没有可用的软件包,执行1.2 1.2下载fedora的epel仓库 yum install epel-release --下载fedora的epel仓库1.3启动redis s…

postman添加cookie

点击cookies 输入域名,添加该域名下的cookies 发送改域名下的请求,cookie会自动追加上

简易记事本开发-(SSM+Vue)

目录 前言 一、项目需求分析 二、项目环境搭建 1.创建MavenWeb项目: 2.配置 Spring、SpringMVC 和 MyBatis SpringMVC 配置文件 (spring-mvc.xml): 配置视图解析器、处理器映射器,配置了CORS(跨源资源共享)&#x…

vsCode 报错[vue/no-v-model-argument]e‘v-model‘ directives require no argument

在vue3中使用ui库中的组件语法v-model:value时会提示[vue/no-multiple-template-root]The template root requires exactly one element. 引入组件使用单标签时会提示[vue/no-multiple-template-root]“The template root requires exactly one element. 原因: 1.可…

初学stm32 -- SysTick定时器

以delay延时函数来介绍SysTick定时器的配置与使用 首先是delay_init()延时初始化函数,这个函数主要是去初始化SysTick定时器; void delay_init() {SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); //选择外部时钟 HCLK/8fac_usSystemCoreCloc…

Gitlab 数据备份全攻略:命令、方法与注意事项

文章目录 1、备份命令2、备份目录名称说明3、手工备份配置文件3.1 备份配置文件3.2 备份ssh文件 4、备份注意事项4.1 停止puma和sicdekiq组件4.2 copy策略需要更多磁盘空间 5、数据备份方法5.1 docker命令备份5.2 kubectl命令备份5.3 参数说明5.4、选择性备份5.5、非tar备份5.6…

selenium工作原理

原文链接:https://blog.csdn.net/weixin_67603503/article/details/143226557 启动浏览器和绑定端口 当你创建一个 WebDriver 实例(如 webdriver.Chrome())时,Selenium 会启动一个新的浏览器实例,并为其分配一个特定的…

Docker--Docker Registry(镜像仓库)

什么是Docker Registry? 镜像仓库(Docker Registry)是Docker生态系统中用于存储、管理和分发Docker镜像的关键组件。 镜像仓库主要负责存储Docker镜像,这些镜像包含了应用程序及其相关的依赖项和配置,是构建和运行Doc…

OpenEuler Linux上怎么测试Nvidia显卡安装情况

当安装好显卡驱动后怎么样知道驱动程序安装好了,这里以T400 OpenEuler 正常情况下,我们只要看一下nvidia-smi 状态就可以确定他已经正常了 如图: 这里就已经确定是可以正常使用了,这里只是没有运行对应的程序,那接来下我们就写一个测试程序来测试一下:以下代码通过AI给出然后…