车辆重识别代码笔记12.19

news2024/12/22 12:12:56

1、resnet_ibn_a和resnet网络的区别

ResNet-IBN-A 是在 ResNet 基础上进行了一些改进的变种,具体来说,它引入了 Instance Batch Normalization (IBN) 的概念,这在某些任务中(如图像识别、迁移学习等)有显著的性能提升。下面是 ResNet-IBN-A标准ResNet 之间的主要区别:

1. Instance Batch Normalization (IBN)实例批量归一化
  • 标准ResNet 使用传统的 Batch Normalization (BN) 来进行归一化处理。BN是将每一层的输出按照批次维度进行归一化,这对于大多数任务表现良好,但在某些情况下,尤其是当批次大小较小或在不同域之间迁移时,可能会遇到问题。

  • ResNet-IBN-A 引入了 Instance Batch Normalization (IBN),即同时使用 Instance Normalization (IN)Batch Normalization (BN) 来处理不同的特征。具体来说,IBN-A 会将输入特征图分成两部分:

    • 一部分使用 Instance Normalization(通常用于样式迁移任务等,基于每个样本的归一化)。

    • 另一部分使用 Batch Normalization(通常用于图像分类任务,基于整个批次的归一化)。

    这种设计的目的是结合 Instance NormalizationBatch Normalization 的优点,能够更好地处理多样化的特征表示,尤其是在跨领域迁移学习和 无监督学习 等任务中表现出色。

Instance Normalization (IN):实例标准化(IN):

  • IN 是在每个样本内进行归一化,常见于图像风格迁移中,能够去除图像中的统计特性(如风格信息)。

Batch Normalization (BN):批量归一化(BN):

  • BN 是基于整个批次的统计信息进行归一化,常用于提高深度网络的训练稳定性和加速收敛。

在 ResNet-IBN-A 中,IBN 层会把特征图分成两部分:

  • 其中一部分使用 Instance Normalization 来处理。

  • 另一部分使用 Batch Normalization 来处理。

2. 改进的网络结构
  • ResNet-IBN-A 在网络结构的设计上与 ResNet 保持高度一致,只是在网络的部分卷积层中引入了 IBN 层。

  • ResNet-IBN-A 的每个残差块(Bottleneck)中会对卷积输出进行 IBN 处理,通常是添加在 ReLU 激活函数前后。IBN 层的作用是帮助网络更好地适应图像的域变化(例如,在处理风格迁移任务或者迁移学习任务时),从而增强网络的泛化能力。

3. 性能差异
  • 标准ResNet 上,使用 Batch Normalization 可以显著加速训练并稳定学习过程,但在某些任务中(尤其是风格迁移、图像生成等任务)可能会出现过拟合或者迁移学习性能较差的情况。

  • ResNet-IBN-A 通过引入 Instance Batch Normalization,使得网络在多个任务和领域上有更强的表现,特别是在 域适应风格迁移小样本学习 或者 跨领域迁移学习 中,它能显著提高模型的性能和泛化能力。

4. 适用任务
  • ResNet 通常用于图像分类、目标检测等任务,在这些任务上表现已经非常好。

  • ResNet-IBN-A 更适用于需要跨领域迁移学习、无监督学习、风格迁移等任务。通过 IBN 结构,它能够在多域任务中提供更强的适应性和性能,尤其在处理复杂的视觉变化时(如图像风格或领域不同的图片)。

5. 具体改进的实现

ResNet-IBN-A 在每个Bottleneck层中的卷积操作后插入了 IBN 层。具体来说,假设你有一个ResNet的基础架构,你可以通过以下步骤将其改为 ResNet-IBN-A:

  • 将原来每个残差块中的 Batch Normalization 替换为 Instance Batch Normalization (IBN)

  • IBN 会将每个卷积输出的特征图分为两部分,并分别进行 Instance NormalizationBatch Normalization 处理。

总结:
  • ResNet-IBN-A标准ResNet 的主要区别在于引入了 Instance Batch Normalization (IBN),这一设计通过结合 Instance NormalizationBatch Normalization 的优点,提高了网络在跨域任务、迁移学习、无监督学习和风格迁移等方面的表现。

  • 标准ResNet 更适合传统的图像分类任务,而 ResNet-IBN-A 更适合在多样化或复杂环境中进行训练,尤其在不同的视觉领域间迁移时具有优势。

2、 def load_param(self, model_path):

  • load_param 函数的目的是从预训练模型中加载除全连接层之外的其他层的参数,并将这些参数复制到当前模型中。全连接层的参数会被跳过,因此该函数通常用于迁移学习,其中我们希望加载卷积层的预训练参数,而重新训练全连接层。

  • 具体操作

    1. 使用 torch.load(model_path) 加载模型参数。

    2. 遍历加载的参数字典。

    3. 对于每一个参数,检查其名称是否包含 'fc',如果是全连接层则跳过。

    4. 对于非全连接层的参数,将其值复制到当前模型中对应的层。

        该方法适用于模型的迁移学习任务,尤其是在进行特定任务的微调(fine-tuning)时,通常会加载预训练模型的卷积层权重,而重新初始化最后的全连接层以适应新的分类任务。

3、 def freeze_backbone(self):

        定义了一个名为 freeze_backbone 的方法,主要功能是 冻结 网络的 backbone 部分的参数,使得这些部分的参数在训练过程中不更新。通常在迁移学习中,冻结特定层(如卷积层)可以加速训练,并避免对已经学到的特征进行破坏,尤其是当我们只对网络的最后几层进行微调时。

        这些层和模块通常负责提取输入图像的特征,因此在迁移学习中,backbone 部分通常在训练过程中保持不变(冻结),只训练网络的最后几层(例如分类层)来适应新任务。

  param.requires_grad = False:通过设置 param.requires_gradFalse,使得这些参数在训练过程中不计算梯度,也就是说它们的值不会在反向传播过程中更新。具体来说:

  • requires_grad 是一个布尔值,当为 True 时,表示需要计算该参数的梯度(即该参数是可训练的),当为 False 时,表示该参数不参与梯度计算(即该参数被冻结,训练时不会更新)。

4、代码 

 if self.neck == 'no':
            self.classifier = nn.Linear(self.in_planes, self.num_classes)  # 池化后的通道数为2048,FC的输出为类别数量
            # self.classifier = nn.Linear(self.in_planes, self.num_classes, bias=False)     # new add by luo
            # self.classifier.apply(weights_init_classifier)  # new add by luo
        elif self.neck == 'bnneck':
            self.bottleneck = nn.BatchNorm1d(self.in_planes)
            #禁用批量归一化层中的偏置项(bias)。
            #requires_grad_(False) 表示偏置项的梯度不再参与反向传播,即在训练过程中该偏置项不会更新。
            self.bottleneck.bias.requires_grad_(False)  # no shift
            self.classifier = nn.Linear(self.in_planes, self.num_classes, bias=False)

这段代码根据 neck 的值来选择不同的分类器设计:

  • neck == 'no':直接将池化后的特征通过一个简单的全连接层进行分类,没有任何额外的处理。适用于模型较简单的情况,不需要额外的特征转换或标准化。

  • neck == 'bnneck':在分类之前添加了一个批量归一化层 BatchNorm1d,用于对输入特征进行标准化处理,以提高训练稳定性并加速训练。批量归一化帮助缓解梯度消失或爆炸的问题,也能减少对权重初始化的敏感度。

neck 的作用

  • 'no':不使用额外的处理,只是一个简单的全连接层。

  • 'bnneck':在全连接层之前增加了批量归一化层,通常用于改善训练的稳定性和加速收敛。

这种方式常见于深度学习中的 迁移学习特征提取 任务,特别是当网络的最后几层需要根据不同任务进行微调时。

5、self.training

在 PyTorch 中,self.training 是一个由 PyTorch 内部自动管理的布尔值,用于指示模型当前是否处于训练模式。这个属性属于 nn.Module 类,是每个模型实例(即继承自 nn.Module 的模型)自动提供的。你可以直接通过 self.training 来检查当前模型是处于训练模式(True)还是推理模式(False)。

工作原理

1. self.training 的自动管理

  • 训练模式:当你调用 model.train() 时,self.training 会自动设置为 True,表示模型处于训练模式。

  • 推理模式:当你调用 model.eval() 时,self.training 会自动设置为 False,表示模型处于推理模式。

self.training 是 PyTorch 为了方便区分训练和推理模式而设计的。通过该属性,你可以在 forward 方法中根据模型的状态来调整行为(例如启用或禁用 Dropout)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2262677.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

唯品会Android面试题及参考答案

HTTP 和 HTTPS 的区别是什么?你的项目使用的是 HTTP 还是 HTTPS? HTTP 和 HTTPS 主要有以下区别。 首先是安全性。HTTP 是超文本传输协议,数据传输是明文的,这意味着在数据传输过程中,信息很容易被窃取或者篡改。比如,在一个不安全的网络环境下,黑客可以通过网络嗅探工具…

黑马Java面试教程_P2_Redis

系列博客目录 文章目录 系列博客目录1前言2 使用场景面试官提问1:我看你做的项目中,都用到了redis,你在最近的项目中哪些场景使用了redis呢?面试官会接着问你1.1:如果发生了缓存穿透、击穿、雪崩,该如何解决?2.1缓存…

Python如何正确解决reCaptcha验证码(9)

前言 本文是该专栏的第73篇,后面会持续分享python爬虫干货知识,记得关注。 我们在处理某些国内外平台项目的时候,相信很多同学或多或少都见过,如下图所示的reCaptcha验证码。 而本文,笔者将重点来介绍在实战项目中,遇到上述中的“reCaptcha验证码”,如何正确去处理并解…

Unity3D仿星露谷物语开发5之角色单例模式

1、目的 使用单例模式创建角色对象,保证整个游戏中只有一个角色,并且让游戏对象具有全局可访问性。 2、流程 (1)创建SingletonMonobehaviour脚本 Assets下创建Scripts目录用于存放所有的脚本,再创建Misk子目录&…

控制表格向上滚动距离最佳实践(以Element ui为例)

前言 在web开发中,有些时候使用的组件库的表格不支持滚动的属性或方法。这个时候我们就要自己去实现这一功能。在Element Plus里,组件库已经具备了支持滚动表格的属性或方法,但是在支持vue2的element ui里,Table组件本身不提供直…

ubuntu16.04ros-用海龟机器人仿真循线系统

下载安装sudo apt-get install ros-kinetic-turtlebot ros-kinetic-turtlebot-apps ros-kinetic-turtlebot-interactions ros-kinetic-turtlebot-simulator ros-kinetic-kobuki-ftdi sudo apt-get install ros-kinetic-rocon-*echo "source /opt/ros/kinetic/setup.bash…

6.3 Postman环境变量与全局变量

欢迎大家订阅【软件测试】 专栏,开启你的软件测试学习之旅! 文章目录 前言1 变量类型2 环境变量(Environment Variables)3 全局变量(Global Variables)4 环境变量与全局变量的区别 前言 为了提高测试的灵活…

概率论得学习和整理27:关于离散的数组 随机变量数组的均值,方差的求法3种公式,思考和细节。

目录 1 例子1:最典型的,最简单的数组的均值,方差的求法 2 例子1的问题:例子1只是1个特例,而不是普遍情况。 2.1 例子1各种默认假设,导致了求均值和方差的特殊性,特别简单。 2.2 我觉得 加权…

模型 QFD(质量功能展开/质量屋)

系列文章 分享 模型,了解更多👉 模型_思维模型目录。将客户需求转化为产品设计。 1 模型 QFD(质量功能展开)的应用 1.1 电信服务及网络维护过程质量改进QFD应用案例 背景介绍: 随着中国加入WTO和国家对电信管制的普遍…

ECharts柱状图-柱图38,附视频讲解与代码下载

引言: 在数据可视化的世界里,ECharts凭借其丰富的图表类型和强大的配置能力,成为了众多开发者的首选。今天,我将带大家一起实现一个柱状图图表,通过该图表我们可以直观地展示和分析数据。此外,我还将提供…

Android XR 应用程序开发 | 从 Unity 6 开发准备到应用程序构建的步骤

在本文中 将解释为 Android XR 开发做准备的步骤,从下载 Unity 6 到项目和构建。 (这次我将解释使用 Mac 的设置,但 Windows 的过程通常相同。 ) 如果您的许可证是 Personal,您仍然可以使用 Unity 开发 Android XR 应…

204页PPT金税四期监管要求与最新政策及风险防范-培训课件

这份资料是关于金税四期监管要求、最新政策及风险防范的培训课件,包含204页PPT内容。核心内容涉及金税四期的发展历程、与金税三期的主要变化、指挥决策系统、税务风险预警指标、重点监控行为、税务稽查重点领域、避税方法及处罚、以及企业自查和税务风险管控原理。…

比较器基本玩法

1 红外水龙头 1 比较器的工作特性 2 红外接收二极管的工作原理 1 红外发射二极管和红外接收二极管 2 红外接收二极管接收到,产生的电流是100uA,即电压等于4V 3 自动出水水龙头 4 比较器内部结构 1 有一些比较器需要加上拉电阻(类似开漏输…

基于Qt的登陆界面设计

目标 自由发挥登录界面的应用场景,实现一个登录窗口的界面。 要求:每行代码都要有注释 代码 // 设置窗口大小为600x400像素 this->resize(600,400); // 设置窗口标题为"TheWitcher 巫师3:狂猎" this->setWindowTitle(&qu…

数据库建模工具 PDManer

数据库建模工具 PDManer 1.PDManer简介2.PDManer使用 1.PDManer简介 PDManer(元数建模)是一款功能强大且易于使用的开源数据库建模工具。它不仅支持多种常见数据库,如MySQL、PostgreSQL、Oracle、SQL Server等,还特别支持国产数据…

排序算法深度好文(图解 + 代码解析 + 误区 QA )——学排序看这一篇就够了!!!

排序算法 一、概述 1. 内部排序 (1) 冒泡排序 (2) 选择排序 a. 简单选择排序 b. 堆排序 (3) 插入排序 a. 直接插入排序 b. 希尔排序 (4) 快速排序 快速排序 hoare 版本 快速排序挖坑法 优化一随机化快速排序 优化二中位数三分法 (5) 归并排序 (6) 基数排序 2. …

【C语言程序设计——基础】顺序结构程序设计(头歌实践教学平台习题)【合集】

目录&#x1f60b; <第1关&#xff1a;顺序结构的应用> 任务描述 相关知识 编程要求 测试说明 我的通关代码: 测试结果&#xff1a; <第2关&#xff1a;交换变量值> 任务描述 相关知识 编程要求 测试说明 我的通关代码: 测试结果&#xff1a; <第…

git stash 的文件如何找回

在Git中&#xff0c;如果你使用了git stash命令来保存你的工作进度&#xff0c;但之后想要找回这些被stash的文件&#xff0c;你可以按照以下步骤进行操作&#xff1a; 1. 查看stash列表 首先&#xff0c;使用git stash list命令来查看当前保存的所有stash记录。这个命令会列出…

【报表查询】.NET开源ORM框架 SqlSugar 系列

文章目录 前言实践一、按月统计没有为0实践二、 统计某月每天的数量实践三、对象和表随意JOIN实践四、 List<int>和表随意JOIN实践五、大数据处理实践六、每10分钟统计Count实践七、 每个ID都要对应时间总结 前言 在我们实际开发场景中&#xff0c;报表是最常见的功能&a…

基于asp.net游乐园管理系统设计与实现

博主介绍&#xff1a;专注于Java&#xff08;springboot ssm 等开发框架&#xff09; vue .net php python(flask Django) 小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设&#xff0c;从业十五余年开发设计教学工作 ☆☆☆ 精彩专栏推荐订阅☆☆☆☆☆不然下次找…