机器学习之偏差

news2025/1/23 21:29:10

机器学习中的偏差(Bias)是指模型的预测值与真实值之间的系统性误差,或者说模型无法准确捕捉数据中复杂模式的能力。偏差通常与模型的假设或学习能力有关,过高的偏差会导致模型的性能不佳,表现为欠拟合


偏差的来源

  1. 模型复杂度过低

    • 如果模型太简单,例如使用线性回归来拟合非线性关系,模型无法充分表示数据的真实分布,从而导致高偏差。
  2. 错误的假设

    • 假设模型中的特征之间是独立的,但实际中它们可能是高度相关的。
    • 模型选择错误,如用朴素贝叶斯处理一个需要非线性决策边界的数据。
  3. 数据不足或有偏

    • 数据量太少或数据采样不均匀,导致模型在训练时对整体数据分布的理解出现偏差。
  4. 过度正则化

    • 添加过多的正则化项(如L1、L2)会约束模型的自由度,使其无法完全学习到数据的本质特征。

偏差的特征

  1. 高偏差模型的表现

    • 在训练集和测试集上的误差都较高。
    • 模型无法有效学习数据的模式。
  2. 常见的高偏差模型

    • 简单线性回归。
    • 决策树深度较小的情况下。
    • KNN中K值过大时(模型变得过于平滑)。

偏差与方差的关系(偏差-方差分解)

偏差-方差分解的核心在于:机器学习模型的总误差(泛化误差)由偏差方差不可约误差组成:

  • 偏差:描述模型对数据本质的表达能力。
  • 方差:描述模型对训练数据的敏感程度。
  • 不可约误差:由噪声或数据中无法学习的部分引入。

偏差与方差的权衡

  • 模型过于简单(高偏差)可能会欠拟合。
  • 模型过于复杂(高方差)可能会过拟合。

降低偏差的方法

  1. 增加模型复杂度

    • 使用更复杂的模型,如从线性模型切换到非线性模型(如SVM、神经网络等)。
  2. 特征工程

    • 提取更多有意义的特征。
    • 引入多项式特征或交互特征,帮助模型学习更复杂的模式。
  3. 减少正则化

    • 减小正则化强度(降低L1或L2系数)。
  4. 获取更多数据

    • 通过更多的数据样本来减少误差,提高模型对数据分布的刻画能力。
  5. 调整算法参数

    • 通过调整超参数(如决策树深度、KNN中的K值等)来提升模型性能。

总结

偏差反映了模型无法学习数据本质模式的能力,通常表现为欠拟合现象。在建模过程中,理解偏差的来源并通过优化模型复杂度和特征表达能力,可以有效降低偏差。同时,要注意权衡偏差与方差,找到模型性能的最佳平衡点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2262407.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SSH连接监控以及新用户创建和系统资源访问限制

目录 监控连接数SSH连接数的限制和影响理论限制可能的影响 创建SSH新用户为每个ssh用户配置系统资源限制1. 使用 /etc/security/limits.conf 限制资源2. 使用 cgroups 控制资源3. 磁盘配额限制4. 限制 SSH 访问5. 使用 PAM 限制6. 监控脚本示例7. 设置定期任务清理8. 检查配置是…

测试工程师八股文04|计算机网络 和 其他

一、计算机网络 1、http和https的区别 HTTP和HTTPS是用于在互联网上传输数据的协议。它们都是应用层协议,建立在TCP/IP协议栈之上,用于客户端(如浏览器)和服务器之间的通信。 ①http和https的主要区别在于安全性。http是一种明…

单片机学习笔记——入门51单片机

一、单片机基础介绍 1.何为单片机 单片机,英文Micro Controller Unit,简称MCU 。内部集成了中央处理器CPU、随机存储器ROM、只读存储器RAM、定时器/计算器、中断系统和IO口等一系列电脑的常用硬件功能 单片机的任务是信息采集(依靠传感器&a…

【青牛科技】D8563是低功耗的CMOS实时时钟/日历电路,它提供一个可编程时钟输出,一个中断输出和掉电检测器,所有的地址和数据通过IC总线接口串行传递。

概述: D8563是低功耗的CMOS实时时钟/日历电路,它提供一个可编程时钟输出,一个中断输出和掉电检测器,所有的地址和数据通过IC总线接口串行传递。最大总线速度为400Kbitss每次读写数据后,内嵌的字地址寄存器会自动产生增量。 主要特…

安卓获取所有可用摄像头并指定预览

在Android设备中,做预览拍照的需求的时候,我们会指定 CameraSelector DEFAULT_FRONT_CAMERA前置 或者后置CameraSelector DEFAULT_BACK_CAMERA 如果你使用的是平板或者工业平板,那么就会遇到多摄像头以及外置摄像头问题,简单的指…

R语言学习笔记-1

1. 基础操作和函数 清空环境:rm(list ls()) 用于清空当前的R环境。 打印输出:print("Hello, world") 用于输出文本到控制台。 查看已安装包和加载包: search():查看当前加载的包。install.packages("package_na…

Windows如何安装go环境,离线安装beego

一、安装go 1、下载go All releases - The Go Programming Language 通过网盘分享的文件:分享的文件 链接: https://pan.baidu.com/s/1MCbo3k3otSoVdmIR4mpPiQ 提取码: hxgf 下载amd64.zip文件,然后解压到指定的路径 2、配置环境变量 需要新建两个环境…

Mac上使用ln指令创建软链接、硬链接

在Mac、Linux和Unix系统中,软连接(Symbolic Link)和硬连接(Hard Link)是两种不同的文件链接方式。它们的主要区别如下: 区别: 硬连接: 不能跨文件系统。不能链接目录(为…

Unity A*算法实现+演示

注意: 本文是对基于下方文章链接的理论,并最终代码实现,感谢作者大大的描述,非常详细,流程稍微做了些改动,文末有工程网盘链接,感兴趣的可以下载。 A*算法详解(个人认为最详细,最通俗易懂的一…

博弈论3:图游戏SG函数(Graph Games)

目录 一、图游戏是什么 1.游戏特征 2.游戏实例 二、图游戏的必胜策略 1.SG 函数(Sprague-Grundy Function) 2.必胜策略(利用SG函数) 3.拿走游戏转化成图游戏(Take-away Game -> Graph Game) 一、图…

0101多级nginx代理websocket配置-nginx-web服务器

1. 前言 项目一些信息需要通过站内信主动推动给用户,使用websocket。web服务器选用nginx,但是域名是以前通过阿里云申请的,解析ip也是阿里云的服务器,甲方不希望更换域名。新的系统需要部署在内网服务器,简单拓扑图如…

qt-C++笔记之自定义类继承自 `QObject` 与 `QWidget` 及开发方式详解

qt-C笔记之自定义类继承自 QObject 与 QWidget 及开发方式详解 code review! 参考笔记 1.qt-C笔记之父类窗口、父类控件、对象树的关系 2.qt-C笔记之继承自 QWidget和继承自QObject 并通过 getWidget() 显示窗口或控件时的区别和原理 3.qt-C笔记之自定义类继承自 QObject 与 QW…

Elastic 8.17:Elasticsearch logsdb 索引模式、Elastic Rerank 等

作者:来自 Elastic Brian Bergholm 今天,我们很高兴地宣布 Elastic 8.17 正式发布! 紧随一个月前发布的 Elastic 8.16 之后,我们将 Elastic 8.17 的重点放在快速跟踪关键功能上,这些功能将带来存储节省和搜索性能优势…

[C++]类的继承

一、什么是继承 1.定义: 在 C 中,继承是一种机制,允许一个类(派生类)继承另一个类(基类)的成员(数据和函数)。继承使得派生类能够直接访问基类的公有和保护成员&#xf…

Docker 用法详解

文章目录 一、Docker 快速入门1.1 部署 MYSQL1.2 命令解读: 二、Docker 基础2.1 常见命令:2.1.1 命令介绍:2.1.2 演示:2.1.3 命令别名: 2.2 数据卷:2.2.1 数据卷简介:2.2.2 数据卷命令&#xff…

【自动化】Python SeleniumUtil 油猴 工具 自动安装用户脚本

【自动化】Python SeleniumUtil 油猴 工具 【自动化】Python SeleniumUtil 工具-CSDN博客【自动化】Python SeleniumUtil 工具。https://blog.csdn.net/G971005287W/article/details/144565691 油猴工具 import timefrom selenium.webdriver.support.wait import WebDriverW…

盛元广通畜牧与水产品检验技术研究所LIMS系统

一、系统概述 盛元广通畜牧与水产品检验技术研究所LIMS系统集成了检测流程管理、样品管理、仪器设备管理、质量控制、数据记录与分析、合规性管理等功能于一体,能够帮助实验室实现全流程的数字化管理。在水产、畜牧产品的质检实验室中,LIMS系统通过引入…

clickhouse-数据库引擎

1、数据库引擎和表引擎 数据库引擎默认是Ordinary,在这种数据库下面的表可以是任意类型引擎。 生产环境中常用的表引擎是MergeTree系列,也是官方主推的引擎。 MergeTree是基础引擎,有主键索引、数据分区、数据副本、数据采样、删除和修改等功…

GEE+本地XGboot分类

GEE本地XGboot分类 我想做提取耕地提取,想到了一篇董金玮老师的一篇论文,这个论文是先提取的耕地,再做作物分类,耕地的提取代码是开源的。 但这个代码直接在云端上进行分类,GEE会爆内存,因此我准备把数据下…

Docker搭建kafka环境

系统:MacOS Sonoma 14.1 Docker版本:Docker version 27.3.1, build ce12230 Docker desktop版本:Docker Desktop 4.36.0 (175267) 1.拉取镜像 先打开Docker Desktop,然后在终端执行命令 docker pull lensesio/fast-data-dev …