YOLOv11融合[CVPR2024]Starnet中的star block取模块

news2024/12/15 12:32:17


YOLOv11v10v8使用教程:  YOLOv11入门到入土使用教程

YOLOv11改进汇总贴:YOLOv11及自研模型更新汇总 


《Rewrite the Stars》

一、 模块介绍

        论文链接:https://arxiv.org/abs/2403.19967

        代码链接:https://github.com/ma-xu/Rewrite-the-Stars/tree/main

论文速览:

        最近的研究引起了人们对网络设计中 “star operation”(元素乘法)尚未开发的潜力的关注。虽然直观的解释比比皆是,但其应用背后的基本原理在很大程度上仍未得到探索。我们的研究试图揭示星形操作在不扩大网络的情况下将输入映射到高维、非线性特征空间的能力——类似于内核技巧。我们进一步介绍了 StarNet,一个简单而强大的原型,在紧凑的网络结构和高效的预算下展示了令人印象深刻的性能和低延迟。就像天上的星星一样,星星运行看起来平淡无奇,但蕴藏着巨大的潜力。

总结:作者使用元素乘法,可以在无需加宽网络下,将输入映射到高维非线性特征空间


⭐⭐本文二创模块仅更新于付费群中,往期免费教程可看下方链接⭐⭐

YOLOv11及自研模型更新汇总(含免费教程)文章浏览阅读366次,点赞3次,收藏4次。群文件2024/11/08日更新。,群文件2024/11/08日更新。_yolo11部署自己的数据集https://xy2668825911.blog.csdn.net/article/details/143633356

⭐⭐付费项目简介:融合上百种顶刊顶会模块的YOLO项目仅119(赠百种改进的v9),此外含自研模型与本文模块融合进行二创三创,最快1-2周完成小论文改进实验,代码每周更新(上周更新超20+二创模块),欢迎QQ:2668825911(或点击下方小卡片扫二维码)加我了解。⭐⭐

⭐⭐本项目并非简单的模块插入,平均每个文章对应4-6个二创或自研融合模块,有效果即可写论文或三创。本文项目使用ultralytics框架,兼容YOLOv3\5\6\8\9\10\world与RT-DETR。⭐⭐

        已进群小伙伴可以先用下文二创及自研模块在自己的数据集上测试,有效果再进行模块结构分析或继续改进。


二、二创融合模块

2.1 相关二创模块及所需参数

        该模块可如图加入到C2f、C3、C3K2与自研等模块中,代码见群文件,所需参数如下。

C2f-变式模块 所需参数:(c1, c2, n, shortcut, g, e)

C3-变式模块 所需参数:(c1, c2, n, shortcut, g, e)

C3k2-变式模块 所需参数:(c1, c2, n, c3k, e, g, shortcut)

RCRep2A及变式模块 所需参数:(c1, c2, shortcut, e)

2.2更改yaml文件 (以自研模型为例)

yam文件解读:YOLO系列 “.yaml“文件解读_yolo yaml文件-CSDN博客

       打开更改ultralytics/cfg/models/11路径下的YOLOv11.yaml文件,替换原有模块。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 377 layers, 2,249,525 parameters, 2,249,509 gradients, 8.7 GFLOPs/258 layers, 2,219,405 parameters, 0 gradients, 8.5 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 377 layers, 8,082,389 parameters, 8,082,373 gradients, 29.8 GFLOPs/258 layers, 7,972,885 parameters, 0 gradients, 29.2 GFLOPs
  m: [0.50, 1.00, 512] # summary:  377 layers, 20,370,221 parameters, 20,370,205 gradients, 103.0 GFLOPs/258 layers, 20,153,773 parameters, 0 gradients, 101.2 GFLOPs
  l: [1.00, 1.00, 512] # summary: 521 layers, 23,648,717 parameters, 23,648,701 gradients, 124.5 GFLOPs/330 layers, 23,226,989 parameters, 0 gradients, 121.2 GFLOPs
  x: [1.00, 1.50, 512] # summary: 521 layers, 53,125,237 parameters, 53,125,221 gradients, 278.9 GFLOPs/330 layers, 52,191,589 parameters, 0 gradients, 272.1 GFLOPs

#  n: [0.33, 0.25, 1024]
#  s: [0.50, 0.50, 1024]
#  m: [0.67, 0.75, 768]
#  l: [1.00, 1.00, 512]
#  x: [1.00, 1.25, 512]
# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, star_Block, []]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 4, RCRep2A, [256, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 4, RCRep2A, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, RCRep2A, [1024, True]]
  - [-1, 1, SPPF_WD, [1024, 7]] # 9

# YOLO11n head
head:
  - [[3, 5, 7], 1, align_3In, [256, 1]] # 10
  - [[4, 6, 9], 1, align_3In, [256, 1]] # 11

  - [[-1, -2], 1, Concat, [1]] #12  cat

  - [-1, 1, RepVGGBlocks, []] #13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]] #14
  - [[-1, 4], 1, Concat, [1]] #15 cat

  - [-1, 1, Conv, [256, 3]] # 16
  - [13, 1, Conv, [512, 3]] #17
  - [13, 1, Conv, [1024, 3, 2]] #18

  - [[16, 17, 18], 1, Detect, [nc]] # Detect(P3, P4, P5)



# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐


 2.3 修改train.py文件

       创建Train脚本用于训练。

from ultralytics.models import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'

if __name__ == '__main__':
    model = YOLO(model='ultralytics/cfg/models/xy_YOLO/xy_yolov1-ConvNeXt.yaml')
    # model = YOLO(model='ultralytics/cfg/models/11/yolo11l.yaml')
    model.train(data='./datasets/data.yaml', epochs=1, batch=1, device='0', imgsz=320, workers=1, cache=False,
                amp=True, mosaic=False, project='run/train', name='exp',)

         在train.py脚本中填入修改好的yaml路径,运行即可训练,数据集创建教程见下方链接。

YOLOv11入门到入土使用教程(含结构图)_yolov11使用教程-CSDN博客


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2259932.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

日常灵感:听劝是一种天赋

希望这段分享能给你提供一些新的角度,让你在自己的工作和生活中更好地利用这份“听劝”的天赋! 父与子的救赎:听劝的天赋 学霸爸爸李先生是一个典型的"别人家的父母"。 他从小就是学霸,凭借过硬的学习能力从重点高中一…

The Rise and Potential of Large Language ModelBased Agents:A Survey---讨论

讨论 论法学硕士研究与Agent研究的互利性 近年来,随着激光诱导金属化技术的发展,激光诱导金属化与化学剂交叉领域的研究取得了长足的进步,促进了这两个领域的发展。在此,我们期待着LLM研究和Agent研究相互提供的一些益处和发展机…

React 第十六节 useCallback 使用详解注意事项

useCallback 概述 1、useCallback 是在React 中多次渲染缓存函数的 Hook,返回一个函数的 memoized的值; 2、如果多次传入的依赖项不变,那么多次定义的时候,返回的值是相同的,防止频繁触发更新; 3、多应用在 父组件为函…

Transformer: Attention Is All You Need (2017) 翻译

论文:Attention Is All You Need 下载地址如下: download: Transformer Attention Is All you need Attention Is All You Need 中文 《Attention Is All You Need》是《Transformer》模型的开创性论文,提出了一种全新的基于注意力机制的架构&#xf…

Git-分支(branch)常用命令

分支 我们在做项目开发的时候,无论是软件项目还是其他机械工程项目,我们为了提高效率以及合理的节省时间等等原因,现在都不再是线性进行,而是将一个项目抽离出诸进行线,每一条线在git中我们就叫做分支,bran…

【AIGC进阶-ChatGPT提示词副业解析】反向心理学在沟通中的运用:激将法的艺术

引言 在日常沟通和管理中,直接的表达方式并不总能达到预期效果。反向心理学,特别是其中的激将法,作为一种独特的沟通技巧,往往能在看似消极的表达中激发出积极的反应。本文将深入探讨反向心理学中激将法的运用技巧、实施策略及其…

360智脑张向征:共建可信可控AI生态 应对大模型安全挑战

发布 | 大力财经 人工智能的加速发展,有力推动了社会的数智化转型;与此同时,带来的相关安全风险也日益凸显。近日,在北京市举办的通明湖人工智能开发与应用大会上,360智脑总裁张向征以“大模型安全研究与实践”为主题&…

lc46全排列——回溯

46. 全排列 - 力扣(LeetCode) 法1:暴力枚举 总共n!种全排列,一一列举出来放入list就行,关键是怎么去枚举呢?那就每次随机取一个,然后删去这个,再从剩下的数组中继续去随机选一个&a…

在线设计平台:Axure新手的在线设计助手

Axure是一款在产品设计、用户体验和交互设计领域广泛使用的强大原型设计工具。它使设计师和产品经理能够迅速构建高保真原型,验证设计和功能,并进行用户测试。结合在线设计平台的协作特性,团队可以更高效地创建、分享和优化原型,加…

Burp与小程序梦中情缘

前言 在日常渗透工作中,有时需要对微信小程序进行抓包渗透,通过抓包,我们可以捕获小程序与服务器之间的通信数据,分析这些数据可以帮助我们发现潜在的安全漏洞,本文通过讲述三个方法在PC端来对小程序抓包渗透 文章目…

gpu硬件架构

1.简介 NVIDIA在视觉计算和人工智能(AI)领域处于领先地位;其旗舰GPU已成为解决包括高性能计算和人工智能在内的各个领域复杂计算挑战所不可或缺的。虽然它们的规格经常被讨论,但很难掌握各种组件的清晰完整的图景。 这些GPU的高性…

SpringCloud集成sleuth和zipkin实现微服务链路追踪

文章目录 前言技术积累spring cloud sleuth介绍zipkin介绍Zipkin与Sleuth的协作 SpringCloud多模块搭建Zipkin Server部署docker pull 镜像启动zipkin server SpringCloud 接入 Sleuth 与 Zipkinpom引入依赖 (springboot2.6)appilication.yml配置修改增加测试链路代码 调用微服…

OBS + SRS:打造专业级直播环境的入门指南

OBS SRS:打造专业级直播环境的入门指南 1. OBS简介2. OBS核心功能详解2.1 场景(Scenes)管理2.2 源(Sources)控制2.3 混音器功能2.4 滤镜与特效2.5 直播控制面板 3. OBS推流到SRS服务器配置指南3.1 环境准备3.2 OBS推流…

Ubuntu K8s

https://serious-lose.notion.site/Ubuntu-K8s-d8d6a978ad784c1baa2fc8c531fbce68?pvs74 2 核 2G Ubuntu 20.4 IP 172.24.53.10 kubeadmkubeletkubectl版本1.23.01.23.01.23.0 kubeadm、kubelet 和 kubectl 是 Kubernetes 生态系统中的三个重要组件 kubeadm: 主…

前端(六)浮动流

浮动流 文章目录 浮动流一、标准流二、浮动流 一、标准流 所谓网页布局就是网页排版的方式,css中有三种网页布局的方式:标准流、浮动流和定位流。 标准流也称文档流,这是浏览器默认的排版方式。标准流中网页的元素会按从左往右、从上往下的…

双内核架构 Xenomai 4 安装教程

Xenomai 4是一种双内核架构, 继承了Xenomai系列的特点,通过在Linux内核中嵌入一个辅助核心(companion core),来提供实时能力。这个辅助核心专门处理那些需要极低且有界响应时间的任务。 本文将在官网教程(https://evlproject.org/…

【安全研究】某黑产网站后台滲透与逆向分析

文章目录 x01. 前言x02. 分析 【🏠作者主页】:吴秋霖 【💼作者介绍】:擅长爬虫与JS加密逆向分析!Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路走来长期坚守并致力于Python与爬虫领域研究与…

【SH】微信小程序调用EasyDL零门槛AI开发平台的图像分类研发笔记

文章目录 微信小程序字符串字符串模板字符串拼接 上传图片编写JS代码编写wxml代码编写wxss代码 GET请求测试编写测试代码域名不合法问题 GET和POST请求测试编写JS代码编写wxml代码编写wxss代码 效果展示 微信小程序字符串 字符串模板 这是ES6引入的特性,允许你通过…

6.2 Postman接口收发包

欢迎大家订阅【软件测试】 专栏,开启你的软件测试学习之旅! 文章目录 前言1 接口收发包的类比1.1 获取对方地址(填写接口URL)1.2 选择快递公司(设置HTTP方法)1.3 填写快递单(设置请求头域&#…

数据链路层(Java)(MAC与IP的区别)

以太网协议: "以太⽹" 不是⼀种具体的⽹络, ⽽是⼀种技术标准; 既包含了数据链路层的内容, 也包含了⼀些物理 层的内容. 例如: 规定了⽹络拓扑结构, 访问控制⽅式, 传输速率等; 例如以太⽹中的⽹线必须使⽤双绞线; 传输速率有10M, 100M, 1000M等; 以太…