目录
一、SMT32电源框图
1、ADC电源与参考电压VDDA
2、调压器供电电路VDD/1.8V
3、备份域电路
二、电源监控器
1、上电复位与掉电复位(POR与PDR)
2、可编程电压检测器 PVD
三、功耗模式
1、睡眠模式
2、停止模式
3、待机模式
电源对电子设备的重要性不言而喻,它是保证系统稳定运行的基础,而保证系统能稳定运行后,又有低功耗的要求。在很多应用场合中都对电子设备的功耗要求非常苛刻,如某些传感器信息采集设备,仅靠小型的电池提供电源,要求工作长达数年之久,且期间不需要任何维护;由于智慧穿戴设备的小型化要求,电池体积不能太大导致容量也比较小,所以也很有必要从控制功耗入手,提高设备的续行时间。因此, STM32 有专门的电源管理外设监控电源并管理设备的运行模式,确保系统正常运行,并尽量降低器件的功耗
一、SMT32电源框图
STM32的工作电压(VDD)为2.0~3.6V。通过内置的电压调节器提供所需的1.8V电源。当主电源VDD掉电后,通过VBAT脚为实时时钟(RTC)和备份寄存器提供电源。
1、ADC电源与参考电压VDDA
为了提高转换精度, STM32 的 ADC 配有独立的电源接口,方便进行单独的滤波。 ADC的工作电源使用 VDDA 引脚输入,使用 VSSA 作为独立的地连接, VREF 引脚则为 ADC提供测量使用的参考电压。
使用ADC的时候,VREF一定不能悬空!!!
2、调压器供电电路VDD/1.8V
在 STM32 的电源系统中调压器供电的电路是最主要的部分,调压器为备份域及待机电路以外的所有数字电路供电,其中包括内核、数字外设以及 RAM,调压器的输出电压约为 1.8V,因而使用调压器供电的这些电路区域被称为 1.8V 域。
运行模式 | 1.8V域全功率运行 |
停止模式-低功耗 | 1.8V 区域的所有时钟都被关闭,相应的外设都停止了工作,但它会保留内核寄存器以及 SRAM 的内容 |
待机模式 | 整个 1.8V 域都断电,该区域的内核寄存器及 SRAM 内容都会丢失 (备份区域的寄存器不受影响) |
调压器可以运行在“运行模式”、“停止模式”以及“待机模式”。在运行模式下, 1.8V域全功率运行;在停止模式下 1.8V 域运行在低功耗状态, 1.8V 区域的所有时钟都被关闭,相应的外设都停止了工作,但它会保留内核寄存器以及 SRAM 的内容;在待机模式下,整个 1.8V 域都断电,该区域的内核寄存器及 SRAM 内容都会丢失 (备份区域的寄存器不受影响)。
3、备份域电路
STM32 的 LSE 振荡器、 RTC 及备份寄存器这些器件被包含进备份域电路中,这部分的电路可以通过 STM32 的 VBAT 引脚获取供电电源,在实际应用中一般会使用 3V 的钮扣电池对该引脚供电。
在图中备份域电路的左侧有一个电源开关结构,它的功能类似图双二极管结构 中的双二极管,在它的“1”处连接了 VBAT 电源,“2”处连接了 VDD 主电源 (一般为 3.3V),右侧“3”处引出到备份域电路中。当 VDD 主电源存在时,由于 VDD 电压较高,备份域电路通过 VDD 供电,节省钮扣电池的电源,仅当 VDD 掉电时,备份域电路由钮扣电池通过 VBAT 供电,保证电路能持续运行,从而可利用它保留关键数据。
二、电源监控器
STM32 芯片主要通过引脚 VDD 从外部获取电源,在它的内部具有电源监控器用于检测 VDD 的电压,以实现复位功能及掉电紧急处理功能,保证系统可靠地运行。
1、上电复位与掉电复位(POR与PDR)
当检测到 VDD 的电压低于阈值 VPOR 及 VPDR 时,无需外部电路辅助, STM32 芯片会自动保持在复位状态,防止因电压不足强行工作而带来严重的后果。
见图 POR 与 PDR ,在刚开始电压低于 VPOR 时 (约 1.92V), STM32 保持在上电复位状态 (POR, Power On Reset),当 VDD 电压持续上升至大于 VPOR 时,芯片开始正常运行,而在芯片正常运行的时候,当检测到 VDD 电压下降至低于 VPDR 阈值 (约 1.88V),会进入掉电复位状态 (PDR, Power Down Reset)。
2、可编程电压检测器 PVD
除此之外, STM32 还提供了可编程电压检测器 PVD,它也是实时检测 VDD 的电压,当检测到电压低于编程的 VPVD 阈值时,会向内核产生一个 PVD 中断 (EXTI16 线中断) 以使内核在复位前进行紧急处理。该电压阈值可通过电源控制寄存器 PWR_CSR 设置。
三、功耗模式
前面提到了一些,实际上按功耗由高到低排列, STM32 具有运行、睡眠、停止和待机四种工作模式。上电复位后 STM32处于运行状态时,当内核不需要继续运行,就可以选择进入后面的三种低功耗模式降低功耗,这三种模式中,电源消耗不同、唤醒时间不同、唤醒源不同,用户需要根据应用需求,选择最佳的低功耗模式。
1、睡眠模式
在睡眠模式中,仅关闭了内核时钟,内核停止运行,但其片上外设, CM3 核心的外设全都还照常运行。有两种方式进入睡眠模式,它的进入方式决定了从睡眠唤醒的方式,分别是 WFI(wait for interrupt) 和 WFE(wait for event),即由等待“中断”唤醒和由“事件”唤醒。睡眠模式的各种特性见表睡眠模式的各种特性。
2、停止模式
在停止模式中,进一步关闭了其它所有的时钟,于是所有的外设都停止了工作,但由于其 1.8V区域的部分电源没有关闭,还保留了内核的寄存器、内存的信息,所以从停止模式唤醒,并重新开启时钟后,还可以从上次停止处继续执行代码。停止模式可以由任意一个外部中断 (EXTI) 唤醒,在停止模式中可以选择电压调节器为开模式或低功耗模式。
3、待机模式
待机模式,它除了关闭所有的时钟,还把 1.8V 区域的电源也完全关闭了,也就是说,从待机模式唤醒后,由于没有之前代码的运行记录,只能对芯片复位,重新检测 boot 条件,从头开始执行程序。它有四种唤醒方式,分别是 WKUP(PA0) 引脚的上升沿, RTC 闹钟事件, NRST 引脚的复位和 IWDG(独立看门狗) 复位。