[leetcode100] 101. 对称二叉树

news2024/12/12 19:43:29

https://leetcode.cn/problems/symmetric-tree/description/?envType=study-plan-v2&envId=top-100-liked

心血来潮,突然感觉很久没做leetcode,刷一题。
看到“简单”,哦吼,应该很快吧。
结果真是《简单》

题目描述

给你一个树,判断这个树是否根据根节点做中轴线是对称的。

思路

层级遍历

我的第一反应是,简单~
感觉不是层级遍历一下,得到一层信息之后,把他们拿出来,只要这个一层拿出来的序列是对称的,每一层都是对称的,就说明这个树就是对称的。
于是乎我就开始编码,写写写遇到第一个问题:
我该如何明确这一层已经结束了呢?
“聪明”的我觉得不是直接计数一下就完事了吗?第一层1,第二层2,第三层2*2…
但这个又个前提是,满二叉树才能够使用。“简单”~只要看到null进行填充就好啦~
于是我就开开心心写代码,提交然后WA笑死。

问题:因为如果使用层级遍历,并且填充的话,理论上是可以的,但是我用的层级遍历是使用队列进行遍历的。这就有一个问题

在这里插入图片描述

当你的第一层也就是2,2在queue里面的时候,这时候没问题,可以进行填充知道第二层应该是[nil, 2, 2, nil],并且也插入了队列[2,2]。
但是我当时写的逻辑是,我只要判断[nil, 2, 2, nil]这个成立之后就不管了,直接flush掉,这时候就有个问题,我怎么知道队列中的[2,2]是那个??他是左树的还是右树的还是混的?
而且就算我保留了上一层的结果,我是可以判断他在那个,但感觉逻辑会很混乱,而且遇上这种全部数值一致的感觉没法做。

但我在写这个博客时候,感觉可以将树展开成数组保存的那种方式,应该就可以了。这样就可以保证每一个nil都是正确填充。但感觉会非常占内存。。。

中序遍历

前面层级遍历不行之后,我就换了思路,感觉不是中序一下,这个树只要这个树是对称的理论上来说
[左树]中[右树]
这里的左树reverse一下会等于右树
感觉这个思路一点问题没有,直接写代码,哈哈哈又是WA

问题:
在这里插入图片描述

看这个图,你会发现这里并不对称,但左子树,右子树无论前中后序全部都一样都是[2,2]

因为
题目要求对称,本质上是要获取树的形状信息,但是你如果用了中序遍历,就会使得树的形状信息被压缩了,压缩成了序列信息。
这里是有损的。
而一个单纯的序列信息并不能准确对应一个树,因为都知道,想要还原一个树,你必须要有中序遍历和其他任何一种便利,所以你现在只有中序遍历,是不能够判断是否对称的。

同步中序

基于上面思路,我的脑子开始抽象了起来,我感觉我不能直接中序一下压缩,然后用压缩后的结果判断,那我就让左树跟右树一起同步做“中序遍历”,这样在做同步的过程之中进行判断,保证树的形状信息。
通俗一点讲就是,左树要往左边走,右树遍历也往左边走。
但是是要判断对称的,所以左树往左边走,右树就往右边走。

然后就有了以下代码

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
 
func judge(node1 *TreeNode, node2 *TreeNode) bool {
    if (node1 != nil && node2 == nil) || (node1 == nil && node2 != nil) {
        return false
    }
    return true
}
func query(node1 *TreeNode, node2 *TreeNode) bool{
    if !judge(node1, node2){
        return false
    }
    if node1 == nil{
        return true
    }

    if !query(node1.Left, node2.Right) {
        return false
    }
    if node1.Val != node2.Val{
        return false
    }
    if !query(node1.Right, node2.Left) {
        return false
    }
    return true
}

func isSymmetric(root *TreeNode) bool {
    
    // left := make([]int, 0)
    // left = midQuery(root.Left, left)
    // right := make([]int, 0)
    // right = midQuery(root.Right, right)
    // fmt.Println(left, right)
    // if len(left) != len(right){
    //     return false
    // }
    // for i := 0; i < len(left); i ++ {
    //     if left[i] != right[len(left)-1 - i] {
    //         return false
    //     }
    // }
    if !judge(root.Left, root.Right) {
        return false
    }
    
    return query(root.Left, root.Right)
}

真tmd简单啊~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2258398.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

技术速递|dotnet scaffold – .NET 的下一代内容创建

作者&#xff1a;Sayed Ibrahim Hashimi - 首席项目经理 排版&#xff1a;Alan Wang Visual Studio 中为 ASP.NET Core 项目搭建脚手架是一项长期特性&#xff0c;是在 ASP.NET Core 发布后不久添加的。多年来&#xff0c;我们一直支持从命令行搭建脚手架。根据从命令行操作中获…

经纬度解析到省市区【开源】

现在业务中有需要解析经纬度到省市区。 按理说可以直接使用高德&#xff0c;百度之类的。 但是老板太抠。于是去找开源项目。找了一圈&#xff0c;数据都太老了&#xff0c;而且有时候编码还不匹配。 所以诞生了这个项目&#xff0c;提供完整的一套省市区编码和定位反解析。…

打开分页机制

分页机制的表 一般线性地址和物理地址大小不会一样&#xff0c;物理内存空间不够时候&#xff0c;涉及和外部磁盘的swap过程&#xff0c;但是这个系统不涉及 CR3放的是页表的起始地址 代码部分 PDE:4MB page 一级页表的页块大小为4MB 然后是这个二级页表 PTE:4KB page 关于什…

EasyPlayer.js播放器如何在iOS上实现低延时直播?

随着流媒体技术的迅速发展&#xff0c;H5流媒体播放器已成为现代网络视频播放的重要工具。其中&#xff0c;EasyPlayer.js播放器作为一款功能强大的H5播放器&#xff0c;凭借其全面的协议支持、多种解码方式以及跨平台兼容性&#xff0c;赢得了广泛的关注和应用。 那么要在iOS上…

多模态大语言模型 MLLM 部署微调实践

1 MLLM 1.1 什么是 MLLM 多模态大语言模型&#xff08;MultimodalLargeLanguageModel&#xff09;是指能够处理和融合多种不同类型数据&#xff08;如文本、图像、音频、视频等&#xff09;的大型人工智能模型。这些模型通常基于深度学习技术&#xff0c;能够理解和生成多种模…

uniapp uni-table最简单固定表头

需求&#xff1a;固定表头数据&#xff0c;在网上找了半天&#xff0c;啥都有&#xff0c;就是一直实现不了&#xff0c;最后更改代码实现 1.效果 2.主要代码讲解完整代码 表格的父级一定要设置高度&#xff0c;不然会错位&#xff0c;我看网上说设置position&#xff1a;fixed…

在C#中编程绘制和移动线段

这个示例允许用户绘制和移动线段。它允许您根据鼠标下方的内容执行三种不同的操作。 当鼠标位于某个线段上时&#xff0c;光标会变成手的形状。然后您可以单击并拖动来移动该线段。当鼠标位于线段的终点上时&#xff0c;光标会变成箭头。然后您可以单击并拖动以移动终点。当鼠…

Hyperbolic Representation Learning: Revisiting and Advancing 论文阅读

Hyperbolic Representation Learning: Revisiting and Advancing 论文地址和代码地址1 介绍2 背景知识2.1 黎曼几何与双曲空间(RiemannianGeometry and Hyperbolic Space)2.2 双曲浅层模型2.3 双曲神经网络&#xff08;HNNs&#xff09;2.4 双曲图卷积神经网络&#xff08;HGCN…

Ansible自动化运维(三)playbook剧本详解

Ansible自动化运维这部分我将会分为五个部分来为大家讲解 &#xff08;一&#xff09;介绍、无密钥登录、安装部署、设置主机清单 &#xff08;二&#xff09;Ansible 中的 ad-hoc 模式 模块详解&#xff08;15&#xff09;个 &#xff08;三&#xff09;Playbook 模式详解 …

【机器学习】手写数字识别的最优解:CNN+Softmax、Sigmoid与SVM的对比实战

一、基于CNNSoftmax函数进行分类 1数据集准备 2模型设计 3模型训练 4模型评估 5结果分析 二、 基于CNNsigmoid函数进行分类 1数据集准备 2模型设计 3模型训练 4模型评估 5结果分析 三、 基于CNNSVM进行分类 1数据集准备 2模型设计 3模型训练 4模型评估 5结果分…

196-基于CPCI Express架构的6u 主控板

一、板卡概述 该板卡是基于 CPCI Express架构的3U主控板&#xff0c;CPU采用Intel Pentium M 2.0GHz CPU&#xff0c;2M L2 cache&#xff0c;533M前端总线&#xff0c;支持512MB / 1GB表贴DDRII 400/533 MHz内存。 二、功能和技术指标 Intel Pentium M 2.0GHz CPU&#xff0c…

机器学习01-发展历史

机器学习01-发展历史 文章目录 机器学习01-发展历史1-传统机器学习的发展进展1. 初始阶段&#xff1a;统计学习和模式识别2. 集成方法和核方法的兴起3. 特征工程和模型优化4. 大规模数据和分布式计算5. 自动化机器学习和特征选择总结 2-隐马尔科夫链为什么不能解决较长上下文问…

HTA8998 实时音频跟踪的高效内置升压2x10W免电感立体声ABID类音频功放

1、特征 输出功率(fIN1kHz,RL4Ω&#xff0c;BTL) VBAT 4V, 2x10.6W(VOUT9V,THDN10%) VBAT 4V, 2x8.6W (VOUT9V,THDN1%) 内置升压电路模式可选择:自适应实时音频跟踪 升压(可提升播放时间50%以上)、强制升压 最大升压值可选择&#xff0c;升压限流值可设置 ACF防破音功能 D类…

Modern Effective C++ 条款三十八:关注不同线程句柄的析构行为

之前内容的总结&#xff1a; item37中说明了可结合的std::thread对应于执行的系统线程。未延迟&#xff08;non-deferred&#xff09;任务的future&#xff08;参见item36&#xff09;与系统线程有相似的关系。 因此&#xff0c;可以将std::thread对象和future对象都视作系统…

【Spring】IoC和DI,控制反转,Bean对象的获取方式

阿华代码&#xff0c;不是逆风&#xff0c;就是我疯 你们的点赞收藏是我前进最大的动力&#xff01;&#xff01; 希望本文内容能够帮助到你&#xff01;&#xff01; 目录 一&#xff1a;什么是IoC 1&#xff1a;什么是容器 2&#xff1a;什么是IoC 二&#xff1a;IoC应用…

【网络协议栈】TCP/IP协议栈中重要协议和技术(DNS、ICMP、NAT、代理服务器、以及内网穿透)

每日激励&#xff1a;“请给自己一个鼓励说&#xff1a;Jack我很棒&#xff01;—Jack” 绪论​&#xff1a; 本章是TCP/IP网络协议层的完结篇&#xff0c;本章将主要去补充一些重要的协议和了解一些网络中常见的名词&#xff0c;具体如&#xff1a;DNS、ICMP、NAT、代理服务器…

离屏渲染概述

我们知道&#xff0c;图像的处理基本都是在GPU中进行&#xff0c;然后GPU将渲染的结果放入当前渲染屏幕的帧缓冲区中&#xff0c;视频控制器取出里面的内容&#xff0c;在屏幕上进行显示。那么有没有什么情况&#xff0c;会因为某些限制&#xff0c;GPU无法将全部的渲染结果直接…

探索 Python 应用的分层依赖:解决 Linux 环境中的 libvirt-python 安装问题

探索 Python 应用的分层依赖&#xff1a;解决 Linux 环境中的 libvirt-python 安装问题 背景Python 版本升级 问题描述原因分析与解决方案 Python 应用的分层依赖&#xff1a;安装与部署的视角libvirt-python的分层依赖尝试的解决方案 使用编译好的 .whl 文件"嫁接"整…

vmware vsphere5---部署vCSA(VMware vCenter Server)附带第二阶段安装报错解决方案

声明 因为这份文档我是边做边写的&#xff0c;遇到问题重新装了好几次所以IP会很乱 ESXI主机为192.168.20.10 VCSA为192.168.20.7&#xff0c;后台为192.168.20.7:5480 后期请自行对应&#xff0c;后面的192.168.20.57请对应192.168.20.7&#xff0c;或根据自己的来 第一阶段…

Unity3D下采集camera场景并推送RTMP服务实现毫秒级延迟直播

技术背景 好多开发者&#xff0c;希望我们能够分享下如何实现Unity下的camera场景采集并推送rtmp服务&#xff0c;然后低延迟播放出来。简单来说&#xff0c;在Unity 中实现采集 Camera 场景并推送RTMP的话&#xff0c;先是获取 Camera 场景数据&#xff0c;通过创建 RenderTex…