TCP Analysis Flags 之 TCP Spurious Retransmission

news2025/1/1 23:02:56

前言

默认情况下,Wireshark 的 TCP 解析器会跟踪每个 TCP 会话的状态,并在检测到问题或潜在问题时提供额外的信息。在第一次打开捕获文件时,会对每个 TCP 数据包进行一次分析,数据包按照它们在数据包列表中出现的顺序进行处理。可以通过 “Analyze TCP sequence numbers” TCP 解析首选项启用或禁用此功能。

TCP 分析展示

在数据包文件中进行 TCP 分析时,关于 “TCP Spurious Retransmission” 一般是如下显示的,包括:

  1. Packet List 窗口中的 Info 信息列,以 [TCP Spurious Retransmission] 黑底红字进行标注;
  2. Packet Details 窗口中的 TCP 协议树下,在 [SEQ/ACK analysis] -> [TCP Analysis Flags] 中定义该 TCP 数据包的分析说明。

  1. 考虑到 TCP 乱序、重传场景的复杂性,专家信息在重传的判断上,前面都会有一个(suspected),表示疑似,说明并不是百分百正确,属于 Note 注意。
  2. 另在专家信息中,对于 TCP Spurious Retransmission 标志位分析同时会增加两种 Note,包括 Spurious Retransmission 和 Retransmission。

TCP Spurious Retransmission 定义

文档中关于 TCP Spurious Retransmission 的定义看起来简单,但实际考虑到 TCP 乱序、重传场景的复杂性,在 TCP 分析中对于 TCP Spurious Retransmission 是与 TCP Out-Of-OrderTCP Fast RetransmissionTCP Retransmission 等在一起判断标记乱序或重传类型,而在不少场景还会有判断出错的问题,当然 Wireshark 考虑到这种情况,也有手动修正的选项,这正好也侧面证明了上面的说法,关于 TCP 乱序、重传的复杂性。

TCP Spurious Retransmission 的定义如下,当以下所有条件都为真时设置:

  • SYN 或者 FIN 标志位设置
  • 不是 Keep-Alive 数据包
  • TCP 段长度大于零
  • 该 TCP 流的数据已被确认,也就是说,反方向之前的 LastACK Num 已被设置
  • 该数据包的 Next Seq Num 小于或等于反方向之前的 LastACK Num

替代 Fast RetransmissionOut-Of-OrderRetransmission

Checks for a retransmission based on analysis data in the reverse direction. Set when all of the following are true:

The SYN or FIN flag is set.
This is not a keepalive packet.
The segment length is greater than zero.
Data for this flow has been acknowledged. That is, the last-seen acknowledgment number has been set.
The next sequence number is less than or equal to the last-seen acknowledgment number.

Supersedes “Fast Retransmission”, “Out-Of-Order”, and “Retransmission”.

结合实际源码+场景,文档中定义有错误,第1个条件(SYN 或者 FIN 标志位设置)和第3个条件(TCP 段长度大于零)应该是或的关系,而不是与的关系。

具体的代码如下,总的来说这段代码是 Wireshark 中 TCP 分析模块的一部分,用于检测和标识 TCP 数据包中的各种重传类型。它的主要功能是根据当前数据包的序列号、长度、标志位以及之前收到的 TCP 数据包的信息,判断当前数据包是否属于重传,如果是则进一步确定它属于哪种重传类型。

根据分析 TCP 数据包的各种特征,对重传数据包进行分类,有助于更好地理解 TCP 连接中的重传行为,对于诊断网络问题很有帮助。在排除了 KeepAlive 数据包后,如果所有下述条件均满足,则认为该数据包是一个虚假重传包。

  • 检查 TCP 段大小是否大于 0;
  • 检查反方向之前的 LastACK Num 是否不为 0;
  • 检查数据包的 Next Seq Num(seq+seglen)是否小于或等于反方向之前的 LastACK Num。
    /* RETRANSMISSION/FAST RETRANSMISSION/OUT-OF-ORDER
     * If the segment contains data (or is a SYN or a FIN) and
     * if it does not advance the sequence number, it must be one
     * of these three.
     * Only test for this if we know what the seq number should be
     * (tcpd->fwd->nextseq)
     *
     * Note that a simple KeepAlive is not a retransmission
     */
    if (seglen>0 || flags&(TH_SYN|TH_FIN)) {
        gboolean seq_not_advanced = tcpd->fwd->tcp_analyze_seq_info->nextseq
                && (LT_SEQ(seq, tcpd->fwd->tcp_analyze_seq_info->nextseq));

        guint64 t;
        guint64 ooo_thres;

        if(tcpd->ta && (tcpd->ta->flags&TCP_A_KEEP_ALIVE) ) {
            goto finished_checking_retransmission_type;
        }

        /* This segment is *not* considered a retransmission/out-of-order if
         *  the segment length is larger than one (it really adds new data)
         *  the sequence number is one less than the previous nextseq and
         *      (the previous segment is possibly a zero window probe)
         *
         * We should still try to flag Spurious Retransmissions though.
         */
        if (seglen > 1 && tcpd->fwd->tcp_analyze_seq_info->nextseq - 1 == seq) {
            seq_not_advanced = FALSE;
        }

        /* Check for spurious retransmission. If the current seq + segment length
         * is less than or equal to the current lastack, the packet contains
         * duplicate data and may be considered spurious.
         */
        if ( seglen > 0
        && tcpd->rev->tcp_analyze_seq_info->lastack
        && LE_SEQ(seq + seglen, tcpd->rev->tcp_analyze_seq_info->lastack) ) {
            if(!tcpd->ta){
                tcp_analyze_get_acked_struct(pinfo->num, seq, ack, TRUE, tcpd);
            }
            tcpd->ta->flags|=TCP_A_SPURIOUS_RETRANSMISSION;
            goto finished_checking_retransmission_type;
        }
    ...
    }

finished_checking_retransmission_type:
  1. next expected sequence number,为 nextseq,定义为 highest seen nextseq。
  2. lastack,定义为 Last seen ack for the reverse flow。

Packetdrill 示例

根据上述 TCP Spurious Retransmission 定义和代码说明,通过 packetdrill 模拟在收到对一个数据分段 ACK 已确认的情况下,仍然再次重传同一个数据分段即可,就会认为是 TCP Spurious Retransmission

# cat tcp_spurious_retrans.pkt 
0   socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
+0  setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
+0  bind(3, ..., ...) = 0
+0  listen(3, 1) = 0

+0 < S 0:0(0) win 16000 <mss 1460>
+0 > S. 0:0(0) ack 1 <...>
+0.01 < . 1:1(0) ack 1 win 16000

+0 accept(3, ..., ...) = 4
+0 < P. 1:21(20) ack 1 win 15000
+0 > . 1:1(0) ack 21 <...>
+0 < P. 21:41(20) ack 1 win 15000
# 

经 Wireshark 展示如下,可以看到满足判断条件后,No.6 标识 [TCP Spurious Retransmission] ,是因为客户端发送的数据分段 No.4 Seq Num 1 + Len 20,已由服务器 No.5 ACK 21 确认收到了该数据分段,但是在之后客户端又再次发送了同样一个数据分段 No.6 Seq Num 1 + Len 20,此时 Wireshark 就会认为 No.6 是虚假重传,而 No.7 是一次重复确认。

实例

关于 TCP Spurious Retransmission 的实例,实际日常抓包中不算少见,是一种比较好理解的 TCP 分析标志。在不同的场景中,也会伴生着出现像是 TCP Dup ACKTCP ACKed unseen segmentTCP Previous segment not captured 等信息。

  1. TCP Spurious Retransmission + TCP Dup ACK

一个 ACK 响应慢的的场景,根据 Length 54 长度,可知该数据包跟踪文件是在客户端捕获,IRTT 为 45.7ms,但在客户端收到服务器端 No.181 的数据分段后,理论应该最多几 ms 内说响应 ACK,但是直到 209ms 之后才回复 No.182 ACK,此时在服务器端已产生了超时重传,也就是 No.183,所以在客户端收到 No.183 同样的一个数据分段后,即标识为 [TCP Spurious Retransmission] , 而此次客户端不到 1ms 就响应了 ACK,也就是 [TCP Dup ACK]

  1. TCP Spurious Retransmission + TCP ACKed unseen segment

一个 ACK 丢失的场景,根据客户端 No.6 数据包 ACK Num 9 可知已经收到了服务器端发送的 Seq Num 9 之前的所有数据分段,但往上到 No.4 却没有看到相关数据分段,当然只是没有捕获到,实际上客户端已收到,因此 No.6 标识成 [TCP ACKed unseen segment] ,但为什么看到了 No.6 ACK 了,服务器端仍然重传了 No.7 。实际上这是抓包点的问题,或者说此数据包跟踪文件不是在服务器端上抓的,譬如在中间端抓取,捕获到了 No.6 ACK,但是这个 ACK 再往服务器去传输时丢失了,因此服务器在没收到 ACK 的情况下,重传了 No.7 Seq Num 1 + Len 8 的数据分段,也因此被标识成 [TCP Spurious Retransmission]

  1. 错误的 TCP Spurious Retransmission

错误的 TCP 虚假重传场景,如下所示,No.5-6 发送端所发送的数据分段,因个别未捕获到,标识为 [TCP Previous segment not caputred] ,但接收端 No.9 的 ACK Num 9881 说明已确认接收了序号 9881 之前的数据段,但在 No.11 发送端又重新发送了 Seq Num 4940 + Len 1368 的数据分段,因此符合条件,标识为 [TCP Spurious Retransmission]

一切看起来挺合理,但为什么说是判断错误呢?凡事深想一层,干活多做一步,再瞅瞅 ip.id ,你会发现有些问题。发送端 No.11 的 ip.id 为 29559,这不是应该是在 No.4 和 No.5 之间的一个数据包嘛,所以呢,No.11 不是重传,它是原本的数据分段,也因此它应该被标识成 [TCP Out-Of-Order]

但是为什么会出现这样的情况,乱序的数据段出现在了 ACK 确认之后,虽然不是完全确认抓包的环境,但基本上可以猜测是交换机镜像或者 TAP 出了问题,更有可能是后者造成的乱序。

总结

考虑到数据包会出现乱序、重传等各类不同的场景,产生 TCP Spurious Retransmission 的情形自然也是五花八门,具体问题具体分析。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2255278.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

在paddle中安装python-bidi出错

翻看网上解决方式&#xff0c;是由于系统中缺少 Rust 及其包管理器 Cargo。python-bidi 依赖 Rust 来编译其扩展&#xff0c;如果没有安装 Rust 和 Cargo&#xff0c;安装过程将无法继续。 解决方式 curl --proto https --tlsv1.2 -sSf https://sh.rustup.rs | sh但是我的终端…

自动化测试工具Ranorex Studio(五十四)-CSV文件

CSV文件 你也可以通过选择CSV文件数据连接器来使用CSV文件为你的测试套件提供数据。在添加了CSV数据连接器后&#xff0c;管理数据源的对话框将被打开。 你可以在表色标示部分编辑数据连接器的名字&#xff0c;也可以在绿色标示的部分选择你要用的CSV文件。选择或者取消蓝色标示…

Flume基础概念

目录 作用组件构成ClientFlowAgentSourceSinkEvent 和Log4j的区别与定位事务传出流程输入到sourcesource端输入Channel 接收输入到SinkSink输出 作用 Flume可以从各种来源&#xff08;如日志文件、消息队列、网络数据、文件系统、数据库等&#xff09;收集数据&#xff0c;并将…

FPGA实战篇(IP核之MMCM/PLL实验)

1.MMCM/PLL IP 核简介 锁相环作为一种反馈控制电路&#xff0c;其特点是利用外部输入的参考信号控制环路内部震荡信号的频率和相位。因为锁相环可以实现输出信号频率对输入信号频率的自动跟踪&#xff0c;所以锁相环通常用于闭环跟踪电路。 锁相环在工作的过程中&#xff0c;当…

Numpy基础练习

import numpy as np 1.创建一个长度为10的一维全为0的ndarray对象,然后让第5个元素等于1 n np.zeros(10,dtypenp.int32) n[4] 12.创建一个元素从10到49的ndarray对象 n np.arrange(10,50)3.将第2题的所有元素位置反转 n[::-1]使用np.random.random创建一个10*10的ndarray对象…

Probabilistic Face Embeddings 论文阅读

Probabilistic Face Embeddings 论文阅读 Abstract1. Introduction2. Related Work3. Limitations of Deterministic Embeddings4. Probabilistic Face Embeddings4.1. Matching with PFEs4.2. Fusion with PFEs4.3. Learning 5. Experiments5.1. Experiments on Different Bas…

基于SSM框架企业人事管理系统的设计与实现

系统合集跳转 源码获取链接 一、系统环境 运行环境: 最好是java jdk 1.8&#xff0c;我们在这个平台上运行的。其他版本理论上也可以。 IDE环境&#xff1a; Eclipse,Myeclipse,IDEA或者Spring Tool Suite都可以 tomcat环境&#xff1a; Tomcat 7.x,8.x,9.x版本均可 操作系统…

云数据库 MongoDB

MongoDB 是一个基于文档的 NoSQL 数据库&#xff0c;它与传统的关系型数据库不同&#xff0c;采用的是灵活的文档结构&#xff08;类似 JSON 格式&#xff09;。MongoDB 是开源的&#xff0c;且高度可扩展&#xff0c;通常用于处理大量的非结构化或半结构化数据。 云数据库 Mon…

AcWing 3496. 特殊年份

文章目录 前言代码思路 前言 写简单题没啥。反正都是要写的&#xff0c;先把能拿到的分数拿了&#xff0c;之后有机会再去啃一啃硬骨头。啃不下来就算了。 代码 #include<bits/stdc.h> using namespace std; char a1[10],a2[10],a3[10],a4[10],a5[10]; int main(){cin…

Vite+Vue3项目实战:组件化开发与通信指南

一、典型的ViteVue3项目结构 续上文成功创建Vue3项目的脚手架&#xff0c;通过visual Studio Code软件打开刚刚创建的文件夹&#xff0c;将会看到这样一个项目结构。 使用Vite构建Vue3项目时&#xff0c;项目结构通常遵循一定的组织规则&#xff0c;以保持代码的清晰和可维护性…

Html笔记()蜘蛛纸牌之卡牌吸附

目的 蜘蛛纸牌中要实现牌组的连接&#xff0c;就需要吸附功能。从效果图中可以看出我们把一张牌拖到另一张卡牌上的时候&#xff0c;它会自动吸附过去并且左对齐。 效果 代码 <!DOCTYPE html> <html><head><style>body {display: flex;justify-cont…

CDC YAML 在阿里云的最佳实践

摘要&#xff1a;本文投稿自阿里云开源大数据平台数据通道团队&#xff0c;主要介绍了 Flink CDC YAML 在实时计算Flink版的最佳实践。内容分为以下五个部分&#xff1a; CDC YAML 简介CDC YAML 核心能力CDC YAML 应用场景阿里云 Flink CDC 企业级功能十分钟在阿里云免费实现一…

在21世纪的我用C语言探寻世界本质——字符函数和字符串函数(2)

人无完人&#xff0c;持之以恒&#xff0c;方能见真我&#xff01;&#xff01;&#xff01; 共同进步&#xff01;&#xff01; 文章目录 一、strncpy函数的使用二、strncat函数的使用三、strncmp函数的使用四、strstr的使用和模拟实现五、strtok函数的使用六、strerror和pe…

Cursor vs VSCode:主要区别与优势分析

Cursor - The AI Code Editor 1. AI 集成能力 Cursor的优势 原生AI集成&#xff1a; # Cursor可以直接通过快捷键调用AI # 例如&#xff1a;按下 Ctrl K 可以直接获取代码建议 def complex_function():# 在这里&#xff0c;你可以直接询问AI如何实现功能# AI会直接在编辑器中…

利用 360 安全卫士极速版关闭电脑开机自启动软件教程

在使用电脑的过程中&#xff0c;过多的开机自启动软件会严重拖慢电脑的开机速度&#xff0c;影响我们的使用体验。本教程中简鹿办公将详细介绍如何使用 360 安全卫士极速版关闭电脑开机自启动软件&#xff0c;让您的电脑开机更加迅速流畅。 一、打开 360 安全卫士极速版 在电…

电子信息工程自动化 基于单片机的居室安全报警系统

摘要 本课题设计了基于STM32F103C6T6单片机为主控核心的居室安全报警系统。为了解决家庭居室的安全监控&#xff0c;通过温湿度芯片SHT30、烟雾传感器MQ-2、天然气传感器MQ-4来获取居室的温湿度、烟雾、天然气含量&#xff0c;使用了一个热释电传感器、菲涅耳透镜、红外传感信…

2025年的预测:从扩容到隐私的Web3全景图

2025年&#xff0c;Web3领域将迎来更多技术突破与创新应用。从扩容技术的蓬勃发展到隐私保护的「ChatGPT时刻」&#xff0c;区块链生态正在逐步完善和扩展。这篇文章基于Equilibrium的年度预测报告&#xff0c;梳理了Web3在未来一年的关键趋势&#xff0c;提供了一幅从扩容到隐…

挑战用React封装100个组件【010】

Hello&#xff0c;大家好&#xff0c;今天我挑战的组件是这样的&#xff01; 今天这个组件是一个打卡成功&#xff0c;或者获得徽章后的组件。点击按钮后&#xff0c;会弹出礼花。项目中的勋章是我通过AI生成的&#xff0c;还是很厉害的哈&#xff01;稍微抠图直接使用。最后面…

解决Windows与Ubuntu云服务器无法通过Socket(udp)通信问题

今天在写Socket通信代码的时候&#xff0c;使用云服务器自己与自己通信没有问题&#xff0c;但是当我们把客户端换为Windows系统的时候却无法发送信息到Linux当中&#xff0c;耗时一上午终于搞定了&#x1f612;。 问题&#xff1a; 如上图&#xff0c;当我在windows的客户端…

MYSQL - 索引详解

一 什么是索引&#xff1f; 实际上在上一篇介绍MYSQL的体系结构当中我们稍微提及了一点&#xff0c;在引擎层&#xff0c;我们提到不同的引擎对应的索引的实现方式&#xff0c;选择是不一样的。 简单理解&#xff0c;索引&#xff08;index&#xff09;其实就是一种帮助MYSQL高…