基于Matlab BP神经网络的电力负荷预测模型研究与实现

news2024/12/26 20:39:28

随着电力系统的复杂性和规模的不断增长,准确的电力负荷预测对于电网的稳定性和运行效率至关重要。传统的负荷预测方法依赖于历史数据和简单的统计模型,但这些方法在处理非线性和动态变化的负荷数据时,表现出较大的局限性。近年来,深度学习和神经网络技术为电力负荷预测提供了新的思路和解决方案。

本文提出了一种基于反向传播(BP)神经网络的电力负荷预测模型,通过对历史电力负荷数据的学习,实现对未来电力负荷的精准预测。首先,本文介绍了数据预处理和特征选择的过程,将过去24小时的电力负荷数据作为模型的输入特征。然后,采用BP神经网络构建了一个多层前馈神经网络,并使用Levenberg-Marquardt(trainlm)算法对网络进行训练。通过100轮的训练,网络模型能够有效地拟合电力负荷的时序变化。

为了评估模型的性能,本文采用了均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)等评估指标,对模型的预测精度进行了全面的分析。同时,本文还展示了模型在未来48小时电力负荷预测中的应用,并与实际数据进行了对比,结果表明该模型能够准确预测电力负荷的变化趋势。

实验结果表明,基于BP神经网络的电力负荷预测模型具有较强的适应性和预测能力,能够为电力系统的负荷管理和调度提供有效的决策支持。

算法流程

运行效果

运行 BP.m
图1 训练参数与结果

(1)最大训练轮数:训练已达到最大训练轮数,意味着模型已经完成了预定的训练周期。
(2)性能指标的改善:从初始值约 5.12e+03 到 0.508,显示了模型在训练过程中显著提升了预测性能。目标性能值设定为 0.001,这意味着模型的目标误差已经接近设定值,表明模型已较为稳定。
(3)训练时长:整个训练过程的时间仅为 00:00:01,说明训练过程相对较短,可能由于模型的复杂度和数据量较小,训练时间得以控制。
(4)MSE(均方误差):作为主要的性能评估指标,MSE衡量了模型预测值与真实值之间的差异,值越小表示模型越准确。

图2 训练进度图

(1)误差变化:在前 10 轮迭代中,误差从约 5000 快速下降,表明模型在初期就能够迅速学习数据中的特征。
(2)收敛趋势:经过约 20 轮后,误差趋于稳定,说明网络已接近最优解,达到了良好的收敛性能。收敛速度较快,意味着训练过程高效。

图3 预测值与真实值对比图

(1)预测结果跟踪:红线表示模型的预测值,蓝线表示实际真实值。从图中可以看到,预测值总体上较好地跟踪了真实值的走势,显示了模型在捕捉时间序列趋势上的有效性。
(2)误差峰值:在时间点 20 附近,出现了明显的峰值,且在某些峰值处存在轻微的预测过冲现象。这样的过冲可能是由于模型在快速变化的趋势上响应过度所导致的,需要进一步优化模型的鲁棒性。

图4 预测误差分布图

(1)误差分布:误差主要集中在 -3 到 4 之间,显示了大部分预测误差相对较小,符合常见的模型训练情况。
(2)误差高频区间:误差最高频率出现在 2 附近,表明大部分预测结果的误差相对较小。
(3)对称性:误差分布相对对称,意味着模型的预测误差较为均匀,未表现出偏向某一方向的偏差。

图5 模型评估指标

(1)RMSE(均方根误差):约 2.4,较低的RMSE表示模型的预测误差较小,预测结果较为精确。
(2)MAE(平均绝对误差):约 2.1,该指标也表明模型误差较小,较为可靠。
(3)MAPE(平均绝对百分比误差):约 2.8,低于 5% 的MAPE通常表示模型的预测精度较高,适合实际应用。

图6 未来48小时电力负荷预测图

这个图表展示了 未来48小时的电力负荷预测,成功捕捉了负荷的周期性波动特征,符合电力负荷的日内变化模式。预测结果的周期性变化和负荷值的波动范围显示了模型较好地拟合了实际的电力负荷需求变化趋势。模型能够准确预测出不同时间段的负荷变化,显示出它对时序数据的有效建模能力。

图7 模型评估指标

1.训练轮数:训练了 100 轮,模型经过足够多的迭代,能够有效拟合训练数据。
2.训练序列的长度:为 101,说明训练数据集的大小合理。
3.误差指标:
(1)RMSE:3.4293,表示整体误差相对适中,模型需要进一步优化。
(2)MAE:2.0996,误差较为稳定,适合进一步优化。
(3)MAPE:2.85%,表明模型在预测时的误差占真实值的比例较小,具有良好的预测能力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2254198.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LeetCode - #150 逆波兰表达式求值

文章目录 前言1. 描述2. 示例3. 答案关于我们 前言 我们社区陆续会将顾毅(Netflix 增长黑客,《iOS 面试之道》作者,ACE 职业健身教练。)的 Swift 算法题题解整理为文字版以方便大家学习与阅读。 LeetCode 算法到目前我们已经更新…

mysql基础学习1

useradd -r -g mysql -s /bin/false mysql (-r)系统用户 不能登录 A temporary password is generated for rootlocalhost: d>#jT7rfoaz) 看是否启动 看进程 端口 直接连接 看日志 varchar (20) char(20)更耗空间 create table student_info(id int,name varchar(20),s…

PPT怎样做的更加精美

目录 PPT怎样做的更加精美 3D的GIF图片 3维空间图​编辑 结果有明显的对比 阅读高质量文献,采用他们的图 PPT怎样做的更加精美 3D的GIF图片 3维空间图 结果有明显的对比

Marvell第四季度营收预计超预期,定制芯片需求激增

芯片制造商Marvell Technology(美满电子科技)(MRVL)在周二发布了强劲的业绩预告,预计第四季度的营收将超过市场预期,得益于企业对其定制人工智能芯片的需求激增。随着人工智能技术的快速发展,特…

爬虫第四篇:Xpath 路径表达式全解析:从网页基础到爬取百度贴吧图片实战

简介:本文围绕 Xpath 路径表达式展开讲解,先是介绍了网页相关基础如 html、css、vue 以及前后端分离的概念与示例,包括各部分的结构、作用及简单代码展示,随后详细阐述了 xml 的节点关系、选取节点、谓语等理论知识,最…

使用lumerical脚本语言创建弯曲波导并进行数据分析(纯代码实现)

本文使用lumerical脚本语言创建弯曲波导、设置有限差分时域(FDTD)模拟、改变波导弯曲半径计算损耗、绘制图像展示电场强度分布情况及对具有不同弯曲半径的波导进行一系列模拟和分析操作(代码均有注释讲解)。 一、创建弯曲波导 1.1 基本结构讲解 (1)包层(Clad) 在波导结…

HarmonyOS4+NEXT星河版入门与项目实战(23)------实现手机游戏摇杆功能

文章目录 1、案例效果2、案例实现1、代码实现2、代码解释4、总结1、案例效果 2、案例实现 1、代码实现 代码如下(示例): import router from @ohos.router import {ResizeDirection } from @ohos.UiTest import curves

Redis面试专题-持久化

前言 开始Redis面试知识的复习和资料的收集(收集和参考了网上的优质文章),本篇文章会不断更新,本系列文章主要分为两部分,一部分是该专题所涉及的相关基础知识,另一部分是面试题与思考题,大部分…

Blender导入下载好的fbx模型像的骨骼像针戳/像刺猬

为什么我下载下来的骨骼模型和我自己绑定的模型骨骼朝向完全不一样 左边是下载的模型 右边是我自己绑定的模型 左边的模型刚刚感觉都是像针一样往外戳的,像刺猬一样那种。 解决方法勾选自动骨骼坐标系

Ubuntu22.04上kdump和crash的使用

0.前言 1.引用: 解决Linux内核问题实用技巧之 - Crash工具结合/dev/mem任意修改内存-腾讯云开发者社区-腾讯云 解决Linux内核问题实用技巧之-dev/mem的新玩法-腾讯云开发者社区-腾讯云 ubuntu内核转储分析——kdump和crash的下载和使用_ubuntu kdump-CSDN博客 U…

linux安全-firewalld防火墙-基础讲解

目录 一、 防火墙技术分类 二、 firewalld 三、 firewalld支持的类型的NAT 四、 富语言 五、 firewalld配置方式 六、 firewall-cmd命令 七、 小实验 这篇文章将对 firewalld 防火墙的基础知识进行介绍 firewalld简介:firewalld的作用是为包过滤机制提供匹配…

Android中使用NSD扫描,实现局域网内设备IP的发现

0. 前言 本文介绍了什么是NSD协议,并介绍了如何在Android中实现NSD的服务端和客户端,实现局域网内的设备发现功能。 1. NSD是什么 在Android开发中,NSD(Network Service Discovery)是一种用于在局域网内发现其他设备…

ROS2 系列学习教程(总目录)

ROS2Learning ROS1 系列学习教程(总目录) 一、ROS2 简介 1.1 ROS2简介及学习资源汇总 二、ROS2 基础 2.1 ROS2安装详细教程(以Humble为例) 2.2 ROS2 构建系统 colcon 介绍、安装与使用 2.3 ROS2 与 ROS1 编码方式对比 ROS2 与 ROS1 编码方式对比&am…

万字长文解读深度学习——VQ-VAE和VQ-VAE-2

🌺历史文章列表🌺 深度学习——优化算法、激活函数、归一化、正则化 深度学习——权重初始化、评估指标、梯度消失和梯度爆炸 深度学习——前向传播与反向传播、神经网络(前馈神经网络与反馈神经网络)、常见算法概要汇总 万字长…

Vue 组件通信全面解析

Vue 组件通信全面解析:方式、原理、优缺点及最佳实践 在 Vue 开发中,组件通信是一个重要的核心问题。随着应用复杂度的增加,如何在组件之间有效传递数据、触发事件,直接影响代码的可维护性和可扩展性。Vue 提供了多种组件通信方式…

对力扣77组合优化的剪枝操作的理解

77. 组合 代码随想录放出了这一张图 我乍一看觉得想当然,但是仔细想想,又不知道以下剪枝代码作何解释,因此我想通过这篇文章简要解释一下 class Solution { private:vector<vector<int>> result;vector<int> path;void backtracking(int n, int k, int sta…

SpringMVC其他扩展

一、全局异常处理机制: 1.异常处理两种方式: 开发过程中是不可避免地会出现各种异常情况的&#xff0c;例如网络连接异常、数据格式异常、空指针异常等等。异常的出现可能导致程序的运行出现问题&#xff0c;甚至直接导致程序崩溃。因此&#xff0c;在开发过程中&#xff0c;…

运行 GreatSQL 时为什么要求关闭透明大页

在大部分运维规范中&#xff0c;一般都会要求在运行 GreatSQL/MySQL 的环境中要关闭透明大页&#xff0c;那么到底什么是透明大页&#xff0c;为什么要关闭&#xff0c;打开有什么风险吗&#xff1f; 在此之前&#xff0c;我也是有点懵的&#xff0c;本文试着回答这个疑问&…

日本IT|AWS技术方向都需要做哪些工作呢?

在日本IT行业中&#xff0c;AWS&#xff08;亚马逊网络服务&#xff09;技术方向的工作主要涉及利用AWS提供的各种服务和工具来构建、部署和管理云计算解决方案。具体来说&#xff0c;AWS技术方向的工作内容可能包括但不限于以下几个方面&#xff1a; 架构设计&#xff1a; 根据…

PostgreSQL实现透视表查询

PostgreSQL 8.3版本发布时&#xff0c;引入了一个名为tablefunc的新扩展。这个扩展提供了一组非常有趣的函数。其中之一是交叉表函数&#xff0c;用于创建数据透视表。这就是我们将在本文中讨论的内容。 需求说明 解释此函数如何工作的最简单方法是使用带有数据透视表的示例…