【人工智能】Python与强化学习:从零实现多臂老虎机(Multi-Armed Bandit)问题

news2024/12/26 2:36:54

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!

强化学习是一种模仿生物行为的学习方法,在不确定环境中寻找最优策略。多臂老虎机(Multi-Armed Bandit, MAB)是强化学习的经典问题之一,模拟了在多个选择中如何平衡探索和利用,以获取最大的长期回报。本篇文章将详细讲解多臂老虎机问题的理论背景、数学模型,以及如何用Python实现常见的强化学习策略(如 ε-贪婪算法、UCB 和汤普森采样)。文章包含大量代码示例与中文注释,帮助读者深入理解强化学习的核心思想,并掌握在多臂老虎机问题中的应用。


目录

  1. 什么是多臂老虎机?
    • 背景与定义
    • 应用场景
  2. 强化学习与多臂老虎机的理论基础
    • 奖励函数
    • 探索与利用
  3. Python实现多臂老虎机模拟环境
  4. ε-贪婪算法
    • 理论分析
    • Python实现与实验
  5. 上置信界(UCB)算法
    • 理论分析
    • Python实现与实验
  6. 汤普森采样(Thompson Sampling)算法
    • 理论分析
    • Python实现与实验
  7. 策略比较与性能评估
  8. 总结与扩展

1. 什么是多臂老虎机?

1.1 背景与定义

多臂老虎机问题是一种决策优化问题,源于赌场中的老虎机场景:

假设有 ( k ) 台老虎机,每台老虎机的奖励分布未知。玩家的目标是在有限的尝试次数内选择拉动哪台老虎机的手柄,以最大化累积奖励。

数学上,多臂老虎机问题可以描述为:

  • ( k ) 个老虎机对应 ( k ) 个概率分布 ( P_1, P_2, \ldots, P_k )。
  • 每次选择老虎机 ( i ) 会产生一个奖励 ( r \sim P_i )。
  • 玩家希望找到一个策略 ( \pi ),使得累计奖励最大化。

1.2 应用场景

多臂老虎机问题的应用场景包括:

  • 广告推荐:选择显示哪种广告,以最大化点击率。
  • 医疗试验:选择最佳治疗方法以提高疗效。
  • Web实验:优化网站布局以提升用户体验。

2. 强化学习与多臂老虎机的理论基础

2.1 奖励函数

在多臂老虎机问题中,奖励函数定义为:
R = ∑ t = 1 T r t R = \sum_{t=1}^T r_t R=t=1Trt
其中:

  • ( r_t ) 是在第 ( t ) 次尝试中的奖励。
  • ( T ) 是尝试的总次数。

2.2 探索与利用

多臂老虎机问题的核心挑战是**探索(Exploration)利用(Exploitation)**之间的权衡:

  • 探索:尝试未被充分选择的老虎机,以了解其奖励分布。
  • 利用:选择当前已知最优的老虎机,以最大化即时奖励。

解决这一权衡需要设计策略,常见的策略包括:

  1. ε-贪婪算法:在大多数情况下选择当前最优动作,但偶尔随机探索。
  2. 上置信界(UCB)算法:使用奖励的置信区间来指导选择。
  3. 汤普森采样(Thompson Sampling):基于贝叶斯更新概率分布进行采样。

3. Python实现多臂老虎机模拟环境

首先,我们实现一个多臂老虎机的模拟环境,用于生成奖励。

import numpy as np

class MultiArmedBandit:
    """
    多臂老虎机模拟环境
    """
    def __init__(self, arms):
        """
        初始化
        :param arms: 每个老虎机的中奖概率列表
        """
        self.arms = arms
        self.k = len(arms)

    def pull(self, arm):
        """
        拉动指定老虎机的手柄
        :param arm: 选择的老虎机编号(0 <= arm < k)
        :return: 奖励(0 或 1)
        """
        if arm < 0 or arm >= self

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2252459.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vscode + conda + qt联合开发

安装vscode 安装conda 清华大学开源软件镜像(Anaconda下载)_清华大学镜像-CSDN博客 conda create新建一个环境&#xff0c;激活这个环境&#xff0c;然后安装pyside6 pip install pyside6 -i https://pypi.tuna.tsinghua.edu.cn/simple 安装成功后输入 pip list查看是否安装…

第十一篇 绘图matplotlib.pyplot的使用

文章目录 摘要安装方法入门案例使用plt绘图使用ax绘图plt.figure参数plot参数案例一 绘制红色实心的点状图案例二 绘制红色的破折线图案例三 绘制两条线颜色总结设置标题、轴名称、图例使用plt实现绘图使用ax实现绘图legend()中loc设置刻度plt自定义刻度ax自定义刻度plt.title …

Unity-Particle System属性介绍(一)基本属性

什么是ParticleSystem 粒子系统是Unity中用于模拟大量粒子的行为的组件。每个粒子都有一个生命周期&#xff0c;包括出生、运动、颜色变化、大小变化和死亡等。粒子系统可以用来创建烟雾、火焰、水、雨、雪、尘埃、闪电和其他各种视觉效果。 开始 在项目文件下创建一个Vfx文件…

计算机的错误计算(一百七十二)

摘要 探讨 MATLAB 对于算式 的计算误差。 例1. 在 MATLAB 中计算 的值。 直接贴图吧&#xff1a; 这样&#xff0c;MATLAB 的输出中只有3位正确数字&#xff0c;有效数字的错误率为 (16-3)/16 81.25% . 因为16位的正确输出为 0.2971242332737277e-18&#xff08;ISReals…

Flink四大基石之CheckPoint(检查点) 的使用详解

目录 一、Checkpoint 剖析 State 与 Checkpoint 概念区分 设置 Checkpoint 实战 执行代码所需的服务与遇到的问题 二、重启策略解读 重启策略意义 代码示例与效果展示 三、SavePoint 与 Checkpoint 异同 操作步骤详解 四、总结 在大数据流式处理领域&#xff0c;Ap…

S4 UPA of AA :新资产会计概览

通用并行会计&#xff08;Universal Parallel Accounting&#xff09;可以支持每个独立的分类账与其他模块集成&#xff0c;UPA主要是为了支持平行评估、多货币类型、财务合并、多准则财务报告的复杂业务需求 在ML层面UPA允许根据不同的分类账规则对物料进行评估&#xff0c;并…

Vue3学习宝典

1.ref函数调用的方式生成响应式数据&#xff0c;可以传复杂和简单数据类型 <script setup> // reactive接收一个对象类型的数据 import { reactive } from vue;// ref用函数调用的方式生成响应式数据&#xff0c;可以传复杂和简单数据类型 import { ref } from vue // 简…

Linux——基础命令(2) 文件内容操作

目录 ​编辑 文件内容操作 1.Vim &#xff08;1&#xff09;移动光标 &#xff08;2&#xff09;复制 &#xff08;3&#xff09;剪切 &#xff08;4&#xff09;删除 &#xff08;5&#xff09;粘贴 &#xff08;6&#xff09;替换,撤销,查找 &#xff08;7&#xff…

openwrt利用nftables在校园网环境下开启nat6 (ipv6 nat)

年初写过一篇openwrt在校园网环境下开启ipv6 nat的文章&#xff0c;利用ip6tables控制ipv6的流量。然而从OpenWrt22版本开始&#xff0c;系统内置的防火墙变为nftables&#xff0c;因此配置方法有所改变。本文主要参考了OpenWRT使用nftables实现IPv6 NAT 这篇文章。 友情提示 …

go语言的成神之路-筑基篇-gin框架渲染模板

第一节-gin框架渲染模板 因为电脑打不开了&#xff0c;所以用朋友的电脑来写的&#xff0c;也是体验了一次从零开始用vscode配置环境&#xff0c;忙活了一上午才配置好环境。太难配置了。好了废话不多说开始今天的进修之旅。 今天开始gin框架的正式学习希望大家认真观看并检查…

【软考网工笔记】网络基础理论——网络层

文章目录 中断处理过程数据包组装RIPRSVPipv4RIPv1 & RIPv2HFC 混合光纤同轴电缆&#xff08;Hybrid Fiber Coax&#xff0c;简称HFC&#xff09;BGP (边界网关协议)BGP-4 协议的四种报文ICMP 协议数字语音电子邮件协议MPLS 多协议标记交换ipv6DHCPDNS名称解析过程查询顺序…

linux网络抓包工具

linux网络抓包工具 一、tcpdump1.1 基本用法1.2 龙芯平台实例操作 二、wireshark2.1 主要功能2.2 龙芯平台实例操作 一、tcpdump tcpdump 指令可列出经过指定网络界面的数据包文件头&#xff0c;可以将网络中传送的数据包的 “头” 完全截获下来提供分析。它支持针对网络层、协…

NaviveUI框架的使用 ——安装与引入(图标安装与引入)

文章目录 概述安装直接引入引入图标样式库 概述 &#x1f349;Naive UI 是一个轻量、现代化且易于使用的 Vue 3 UI 组件库&#xff0c;它提供了一组简洁、易用且功能强大的组件&#xff0c;旨在为开发者提供更高效的开发体验&#xff0c;特别是对于构建现代化的 web 应用程序。…

WPF DataGrid 列隐藏

Window节点加上下面的 <Window.Resources><FrameworkElement x:Key"ProxyElement" DataContext"{Binding}" /></Window.Resources>然后随便加一个隐藏控件 <ContentControl Content"{StaticResource ProxyElement}" Visi…

【Gitlab】CICD使用minio作为分布式缓存

1、安装minio 下载适合自己系统版本的安装文件https://dl.min.io/server/minio/release/windows-amd64/ yum install xxx.rpm 2、配置/etc/profile export MINIO_ACCESS_KEYroot [ui登录账号] export MINIO_SECRET_KEYminioDev001 [ui登录密码] export MINIO_OPTS"…

用到动态库的程序运行过程

当我们写好了一段代码然后编译运行后会生成可执行文件&#xff0c;该文件会存在磁盘的当前目录下&#xff0c;而当我们开始运行这段程序时&#xff0c;操作系统&#xff08;加载器&#xff09;需要将其从磁盘加载进内存然后执行相关操作&#xff0c;而对于用到动态库的程序&…

ansible自动化运维(一)配置主机清单

目录 一、介绍 1.1了解自动化运维 1.2 ansible简介 1.3 ansible自动化运维的优势 1.4 ansible架构图 二、部署ansible 2.1 基本参数 2.2 Ansible帮助命令 2.3 配置主机清单 2.3.1 查看ansible的所有配置文件 2.3.2 /etc/ansible/ansible.cfg常用配置选项 2.3.3 ssh密…

高效集成:将聚水潭数据导入MySQL的实战案例

聚水潭数据集成到MySQL&#xff1a;店铺信息查询案例分享 在数据驱动的业务环境中&#xff0c;如何高效、准确地实现跨平台的数据集成是每个企业面临的重要挑战。本文将聚焦于一个具体的系统对接集成案例——将聚水潭的店铺信息查询结果集成到MySQL数据库中&#xff0c;以供BI…

Spark基本命令详解

文章目录 Spark基本命令详解一、引言二、Spark Core 基本命令1、Transformations&#xff08;转换操作&#xff09;1.1、groupBy(func)1.2、filter(func) 2、Actions&#xff08;动作操作&#xff09;2.1、distinct([numTasks])2.2、sortBy(func, [ascending], [numTasks]) 三、…

[在线实验]-ActiveMQ Docker镜像的下载与部署

镜像下载 下载ActiveMQ的Docker镜像文件。通常&#xff0c;这些文件会以.tar格式提供&#xff0c;例如activemq.tar。 docker的activemq镜像资源-CSDN文库 加载镜像 下载完成后&#xff0c;您可以使用以下命令将镜像文件加载到Docker中&#xff1a; docker load --input a…