乘积求导法则、除法求导法则和链式求导法则

news2024/12/27 7:17:26

乘积求导法则、除法求导法则和链式求导法则

  • 1. Constant multiples of functions (函数的常数倍)
  • 2. Sums and differences of functions (函数和与函数差)
  • 3. Products of functions via the product rule (通过乘积法则求积函数的导数)
  • 4. Quotients of functions via the quotient rule (通过商法则求商函数的导数)
  • 5. Composition of functions via the chain rule (通过链式求导法则求复合函数的导数)
  • 6. A nasty example (难以处理的例子)
  • 7. Justification of the product rule and the chain rule (乘积法则和链式求导法则的理由)
  • References

1. Constant multiples of functions (函数的常数倍)

It’s easy to deal with a constant multiple of a function: you just multiply by the constant after you differentiate.
函数的常数倍进行求导,只需在函数求导后,用常数乘以该函数的导数。

We know the derivative of x 2 x^2 x2 is 2 x 2x 2x; so the derivative of 7 x 2 7x^2 7x2 is 7 times 2 x 2x 2x, or 14 x 14x 14x.

d d x ( x 2 ) = 2 x \begin{aligned} \frac{\text{d}}{\text{d}x}(x^2) = 2x \end{aligned} dxd(x2)=2x

d d x ( 7 x 2 ) = 7 × d d x ( x 2 ) = 7 × 2 x = 14 x \begin{aligned} \frac{\text{d}}{\text{d}x}(7x^2) = 7 \times \frac{\text{d}}{\text{d}x}(x^2) = 7 \times 2x = 14x \end{aligned} dxd(7x2)=7×dxd(x2)=7×2x=14x

The derivative of − x 2 -x^2 x2 is − 2 x -2x 2x, since you can think of the minus out front as multiplication by -1.

d d x ( − x 2 ) = − 1 × d d x ( x 2 ) = − 1 × 2 x = − 2 x \begin{aligned} \frac{\text{d}}{\text{d}x}(-x^2) = -1 \times \frac{\text{d}}{\text{d}x}(x^2) = -1 \times 2x = -2x \end{aligned} dxd(x2)=1×dxd(x2)=1×2x=2x

Similarly, to find the derivative of 13 x 4 13x^4 13x4, multiply 13 by 4, giving a coefficient of 52, and then knock the power down by one to get 52 x 3 52x^3 52x3.

d d x ( 13 x 4 ) = 13 × d d x ( x 4 ) = 13 × 4 x 3 = 52 x 3 \begin{aligned} \frac{\text{d}}{\text{d}x}(13x^4) = 13 \times \frac{\text{d}}{\text{d}x}(x^4) = 13 \times 4x^3 = 52x^3 \end{aligned} dxd(13x4)=13×dxd(x4)=13×4x3=52x3

2. Sums and differences of functions (函数和与函数差)

It’s even easier to differentiate sums and differences of functions: just differentiate each piece and then add or subtract.
对函数和与函数差求导,只需对每一部分求导,然后再相加或相减。

d d x ( 3 x 5 − 2 x 2 + 7 x + 2 ) = d d x ( 3 x 5 − 2 x 2 + 7 x 1 / 2 + 2 ) = d d x ( 3 x 5 − 2 x 2 + 7 x − 1 / 2 + 2 ) = d d x ( 3 x 5 ) + d d x ( − 2 x 2 ) + d d x ( 7 x − 1 / 2 ) + d d x ( 2 ) = 3 × d d x ( x 5 ) − 2 × d d x ( x 2 ) + 7 × d d x ( x − 1 / 2 ) + d d x ( 2 ) = 3 × 5 x 4 − 2 × 2 x + 7 × ( − 1 / 2 ) x − 1 / 2 − 1 + 0 = 15 x 4 − 4 x − 7 2 x − 3 / 2 = 15 x 4 − 4 x − 7 2 1 x 3 / 2 = 15 x 4 − 4 x − 7 2 1 x 2 / 2 x 1 / 2 = 15 x 4 − 4 x − 7 2 1 x x \begin{aligned} \frac{\text{d}}{\text{d}x}(3x^5 - 2x^2 + \frac{7}{\sqrt{x}} + 2) &= \frac{\text{d}}{\text{d}x}(3x^5 - 2x^2 + \frac{7}{{x}^{1/2}} + 2) \\ &= \frac{\text{d}}{\text{d}x}(3x^5 - 2x^2 + 7{x}^{-1/2} + 2) \\ &= \frac{\text{d}}{\text{d}x}(3x^5) + \frac{\text{d}}{\text{d}x}(-2x^2) + \frac{\text{d}}{\text{d}x}(7{x}^{-1/2}) + \frac{\text{d}}{\text{d}x}(2) \\ &= 3 \times \frac{\text{d}}{\text{d}x}(x^5) - 2 \times \frac{\text{d}}{\text{d}x}(x^2) + 7 \times \frac{\text{d}}{\text{d}x}({x}^{-1/2}) + \frac{\text{d}}{\text{d}x}(2) \\ &= 3 \times 5x^4 - 2 \times 2x + 7 \times (-1/2){x}^{-1/2 - 1} + 0 \\ &= 15x^4 - 4x - \frac{7}{2}{x}^{-3/2} \\ &= 15x^4 - 4x - \frac{7}{2}\frac{1}{x^{3/2}} \\ &= 15x^4 - 4x - \frac{7}{2}\frac{1}{x^{2/2}x^{1/2}} \\ &= 15x^4 - 4x - \frac{7}{2}\frac{1}{x\sqrt{x}} \\ \end{aligned} dxd(3x52x2+x 7+2)=dxd(3x52x2+x1/27+2)=dxd(3x52x2+7x1/2+2)=dxd(3x5)+dxd(2x2)+dxd(7x1/2)+dxd(2)=3×dxd(x5)2×dxd(x2)+7×dxd(x1/2)+dxd(2)=3×5x42×2x+7×(1/2)x1/21+0=15x44x27x3/2=15x44x27x3/21=15x44x27x2/2x1/21=15x44x27xx 1

x 5 / 2 = x 4 / 2 x 1 / 2 = x 2 x 1 / 2 = x 2 x x 7 / 2 = x 6 / 2 x 1 / 2 = x 3 x 1 / 2 = x 3 x \begin{aligned} x^{5/2} = x^{4/2}x^{1/2} = x^{2}x^{1/2} = x^{2}\sqrt{x} \\ x^{7/2} = x^{6/2}x^{1/2} = x^{3}x^{1/2} = x^{3}\sqrt{x} \\ \end{aligned} x5/2=x4/2x1/2=x2x1/2=x2x x7/2=x6/2x1/2=x3x1/2=x3x

3. Products of functions via the product rule (通过乘积法则求积函数的导数)

  • 乘积法则 (版本 1)

在这里插入图片描述
Product rule (version 1): if h ( x ) = f ( x ) g ( x ) h(x) = f(x)g(x) h(x)=f(x)g(x), then h ′ ( x ) = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) h'(x) = f'(x)g(x) + f(x)g'(x) h(x)=f(x)g(x)+f(x)g(x).

That is, you take the derivative of f f f and multiply it by g g g (not the derivative of g g g). Then you also have to take the derivative of g g g and multiply it by f f f. Finally, add the two things together.

h ( x ) = f ( x ) g ( x ) = ( x 5 + 2 x − 1 ) ( 3 x 8 − 2 x 7 − x 4 − 3 x ) h(x) = f(x)g(x) = (x^{5} + 2x - 1)(3x^{8} - 2x^{7} - x^4 - 3x) h(x)=f(x)g(x)=(x5+2x1)(3x82x7x43x)
f ( x ) = x 5 + 2 x − 1 ,   f ′ ( x ) = 5 x 4 + 2 f(x) = x^{5} + 2x - 1, \ f'(x) = 5x^4 + 2 f(x)=x5+2x1, f(x)=5x4+2
g ( x ) = 3 x 8 − 2 x 7 − x 4 − 3 x ,   g ′ ( x ) = 24 x 7 − 14 x 6 − 4 x 3 − 3 g(x) = 3x^{8} - 2x^{7} - x^4 - 3x, \ g'(x) = 24x^7 - 14x^6 - 4x^3 - 3 g(x)=3x82x7x43x, g(x)=24x714x64x33

h ′ ( x ) = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) = ( 5 x 4 + 2 ) ( 3 x 8 − 2 x 7 − x 4 − 3 x ) + ( x 5 + 2 x − 1 ) ( 24 x 7 − 14 x 6 − 4 x 3 − 3 ) \begin{aligned} h'(x) &= f'(x)g(x) + f(x)g'(x) \\ &= (5x^4 + 2)(3x^{8} - 2x^{7} - x^4 - 3x) + (x^{5} + 2x - 1)(24x^7 - 14x^6 - 4x^3 - 3) \\ \end{aligned} h(x)=f(x)g(x)+f(x)g(x)=(5x4+2)(3x82x7x43x)+(x5+2x1)(24x714x64x33)

  • 乘积法则 (版本 2)

We can take the above form of the product rule and make some replacements: first, u u u replaces f ( x ) f(x) f(x), so that d u / d x \text{d}u/\text{d}x du/dx replaces f ′ ( x ) f'(x) f(x); we also do the same thing with v v v and g ( x ) g(x) g(x).

在这里插入图片描述
Product rule (version 2): if y = u v y = uv y=uv, then d y d x = d u d x v + u d v d x \frac{\text{d}y}{\text{d}x} = \frac{\text{d}u}{\text{d}x}v + u\frac{\text{d}v}{\text{d}x} dxdy=dxduv+udxdv.

y = u v = ( x 3 + 2 x ) ( 3 x + x + 1 ) y = uv = (x^3 + 2x)(3x + \sqrt{x} + 1) y=uv=(x3+2x)(3x+x +1)
u = x 3 + 2 x ,   d u d x = 3 x 2 + 2 u = x^3 + 2x, \ \frac{\text{d}u}{\text{d}x} = 3x^2 + 2 u=x3+2x, dxdu=3x2+2
v = 3 x + x + 1 ,   d v d x = 3 + 1 2 x − 1 / 2 = 3 + 1 2 x 1 / 2 = 3 + 1 2 x v = 3x + \sqrt{x} + 1, \ \frac{\text{d}v}{\text{d}x} = 3 + \frac{1}{2}x^{-1/2} = 3 + \frac{1}{2x^{1/2}} = 3 + \frac{1}{2 \sqrt{x}} v=3x+x +1, dxdv=3+21x1/2=3+2x1/21=3+2x 1

d y d x = d u d x v + u d v d x = ( 3 x 2 + 2 ) ( 3 x + x + 1 ) + ( x 3 + 2 x ) ( 3 + 1 2 x ) \begin{aligned} \frac{\text{d}y}{\text{d}x} &= \frac{\text{d}u}{\text{d}x}v + u\frac{\text{d}v}{\text{d}x} \\ &= (3x^2 + 2)(3x + \sqrt{x} + 1) + (x^3 + 2x)(3 + \frac{1}{2 \sqrt{x}}) \\ \end{aligned} dxdy=dxduv+udxdv=(3x2+2)(3x+x +1)+(x3+2x)(3+2x 1)

  • 乘积法则 (三个变量)

在这里插入图片描述
Product rule (three variables): if y = u v w y = uvw y=uvw, then d y d x = d u d x v w + u d v d x w + u v d w d x \frac{\text{d}y}{\text{d}x} = \frac{\text{d}u}{\text{d}x}vw + u\frac{\text{d}v}{\text{d}x}w + uv\frac{\text{d}w}{\text{d}x} dxdy=dxduvw+udxdvw+uvdxdw.

Just add up u v w uvw uvw three times, but put a d / d x \text{d}/\text{d}x d/dx in front of a different variable in each term. The same trick works for four or more variables, every variable gets differentiated once!
u v w uvw uvw 加三次,但对于每一项,要将 d / d x \text{d}/\text{d}x d/dx 放在不同的变量之前。同样的方法适用于四个或更多个变量,每一个变量都要进行一次微分运算。

y = u v w = ( x 2 + 1 ) ( x 2 + 3 x ) ( x 5 + 2 x 4 + 7 ) y = uvw = (x^2 + 1)(x^2 + 3x)(x^5 + 2x^4 + 7) y=uvw=(x2+1)(x2+3x)(x5+2x4+7)
u = x 2 + 1 ,   d u d x = 2 x u = x^2 + 1, \ \frac{\text{d}u}{\text{d}x} = 2x u=x2+1, dxdu=2x
v = x 2 + 3 x ,   d v d x = 2 x + 3 v = x^2 + 3x, \ \frac{\text{d}v}{\text{d}x} = 2x + 3 v=x2+3x, dxdv=2x+3
w = x 5 + 2 x 4 + 7 ,   d w d x = 5 x 4 + 8 x 3 w = x^5 + 2x^4 + 7, \ \frac{\text{d}w}{\text{d}x} = 5x^{4} + 8x^{3} w=x5+2x4+7, dxdw=5x4+8x3

d y d x = d u d x v w + u d v d x w + u v d w d x = ( 2 x ) ( x 2 + 3 x ) ( x 5 + 2 x 4 + 7 ) + ( x 2 + 1 ) ( 2 x + 3 ) ( x 5 + 2 x 4 + 7 ) + ( x 2 + 1 ) ( x 2 + 3 x ) ( 5 x 4 + 8 x 3 ) \begin{aligned} \frac{\text{d}y}{\text{d}x} &= \frac{\text{d}u}{\text{d}x}vw + u\frac{\text{d}v}{\text{d}x}w + uv\frac{\text{d}w}{\text{d}x} \\ &= (2x)(x^2 + 3x)(x^5 + 2x^4 + 7) + (x^2 + 1)(2x + 3)(x^5 + 2x^4 + 7) + (x^2 + 1)(x^2 + 3x)(5x^{4} + 8x^{3}) \\ \end{aligned} dxdy=dxduvw+udxdvw+uvdxdw=(2x)(x2+3x)(x5+2x4+7)+(x2+1)(2x+3)(x5+2x4+7)+(x2+1)(x2+3x)(5x4+8x3)

4. Quotients of functions via the quotient rule (通过商法则求商函数的导数)

  • 除法法则 (版本 1)

在这里插入图片描述
Quotient rule (version 1): if h ( x ) = f ( x ) g ( x ) h(x) = \frac{f(x)}{g(x)} h(x)=g(x)f(x), then h ′ ( x ) = f ′ ( x ) g ( x )   −   f ( x ) g ′ ( x ) ( g ( x ) ) 2 h'(x) = \frac{f'(x)g(x) \ - \ f(x)g'(x)}{(g(x))^2} h(x)=(g(x))2f(x)g(x)  f(x)g(x).

Notice that the numerator of the right-hand fraction is the same as the numerator in the product rule, except with a minus instead of a plus.
除了正号变成了负号外,等号右边分式的分子与乘积法则中的分子是一样的。

h ( x ) = f ( x ) / g ( x ) = 2 x 3 − 3 x + 1 x 5 − 8 x 3 + 2 h(x) = f(x)/g(x) = \frac{2x^{3} - 3x + 1}{x^{5} - 8x^{3} + 2} h(x)=f(x)/g(x)=x58x3+22x33x+1
f ( x ) = 2 x 3 − 3 x + 1 ,   f ′ ( x ) = 6 x 2 − 3 f(x) =2x^{3} - 3x + 1, \ f'(x) = 6x^2 - 3 f(x)=2x33x+1, f(x)=6x23
g ( x ) = x 5 − 8 x 3 + 2 ,   g ′ ( x ) = 5 x 4 − 24 x 2 g(x) = x^{5} - 8x^{3} + 2, \ g'(x) = 5x^4 - 24x^2 g(x)=x58x3+2, g(x)=5x424x2

h ′ ( x ) = f ′ ( x ) g ( x )   −   f ( x ) g ′ ( x ) ( g ( x ) ) 2 = ( 6 x 2 − 3 ) ( x 5 − 8 x 3 + 2 )   −   ( 2 x 3 − 3 x + 1 ) ( 5 x 4 − 24 x 2 ) ( x 5 − 8 x 3 + 2 ) 2 \begin{aligned} h'(x) &= \frac{f'(x)g(x) \ - \ f(x)g'(x)}{(g(x))^2} \\ &= \frac{(6x^2 - 3)(x^{5} - 8x^{3} + 2) \ - \ (2x^{3} - 3x + 1)(5x^4 - 24x^2)}{(x^{5} - 8x^{3} + 2)^2} \\ \end{aligned} h(x)=(g(x))2f(x)g(x)  f(x)g(x)=(x58x3+2)2(6x23)(x58x3+2)  (2x33x+1)(5x424x2)

  • 除法法则 (版本 2)

在这里插入图片描述
Quotient rule (version 2): if y = u v y = \frac{u}{v} y=vu, then d y d x = d u d x v   −   u d v d x v 2 \frac{\text{d}y}{\text{d}x} = \frac{\frac{\text{d}u}{\text{d}x}v \ - \ u\frac{\text{d}v}{\text{d}x}}{v^2} dxdy=v2dxduv  udxdv.

y = u / v = 3 x 2 + 1 2 x 8 − 7 y = u/v = \frac{3x^{2} + 1}{2x^{8} - 7} y=u/v=2x873x2+1
u = 3 x 2 + 1 ,   d u d x = 6 x u =3x^{2} + 1, \ \frac{\text{d}u}{\text{d}x} = 6x u=3x2+1, dxdu=6x
v = 2 x 8 − 7 ,   d v d x = 16 x 7 v = 2x^{8} - 7, \ \frac{\text{d}v}{\text{d}x} = 16x^{7} v=2x87, dxdv=16x7

d y d x = d u d x v   −   u d v d x v 2 = ( 6 x ) ( 2 x 8 − 7 )   −   ( 3 x 2 + 1 ) ( 16 x 7 ) ( 2 x 8 − 7 ) 2 \begin{aligned} \frac{\text{d}y}{\text{d}x} &= \frac{\frac{\text{d}u}{\text{d}x}v \ - \ u\frac{\text{d}v}{\text{d}x}}{v^2} \\ &= \frac{(6x)(2x^{8} - 7) \ - \ (3x^{2} + 1)(16x^{7})}{(2x^{8} - 7)^2} \\ \end{aligned} dxdy=v2dxduv  udxdv=(2x87)2(6x)(2x87)  (3x2+1)(16x7)

5. Composition of functions via the chain rule (通过链式求导法则求复合函数的导数)

  • 链式求导法则 (版本 1)

在这里插入图片描述
Chain rule (version 1): if h ( x ) h(x) h(x) = f ( g ( x ) ) f(g(x)) f(g(x)), then h ′ ( x ) = f ′ ( g ( x ) ) g ′ ( x ) h'(x) = f'(g(x))g'(x) h(x)=f(g(x))g(x).

f ( u ) = u 99 ,   f ′ ( u ) = 99 u 98 f(u) = u^{99}, \ f'(u) = 99u^{98} f(u)=u99, f(u)=99u98
g ( x ) = x 2 + 1 ,   g ′ ( x ) = 2 x g(x) = x^{2} + 1, \ g'(x) = 2x g(x)=x2+1, g(x)=2x
h ( x ) = f ( g ( x ) ) = f ( x 2 + 1 ) = ( x 2 + 1 ) 99 h(x) = f(g(x)) = f(x^{2} + 1) = (x^{2} + 1)^{99} h(x)=f(g(x))=f(x2+1)=(x2+1)99

h ′ ( x ) = f ′ ( g ( x ) ) g ′ ( x ) = 99 ( g ( x ) ) 98 ( 2 x ) = 99 ( x 2 + 1 ) 98 ( 2 x ) = 198 x ( x 2 + 1 ) 98 \begin{aligned} h'(x) &= f'(g(x))g'(x) \\ &= 99(g(x))^{98}(2x) \\ &= 99(x^{2} + 1)^{98}(2x) \\ &= 198x(x^{2} + 1)^{98} \\ \end{aligned} h(x)=f(g(x))g(x)=99(g(x))98(2x)=99(x2+1)98(2x)=198x(x2+1)98

  • 链式求导法则 (版本 2)

在这里插入图片描述
Chain rule (version 2): if y y y is a function of u u u, and u u u is a function of x x x, then d y d x = d y d u d u d x \frac{\text{d}y}{\text{d}x} = \frac{\text{d}y}{\text{d}u}\frac{\text{d}u}{\text{d}x} dxdy=dudydxdu.

y = u 99 ,   d y d u = 99 u 98 y = u^{99}, \ \frac{\text{d}y}{\text{d}u} = 99u^{98} y=u99, dudy=99u98
u = x 2 + 1 ,   d u d x = 2 x u = x^{2} + 1, \ \frac{\text{d}u}{\text{d}x} = 2x u=x2+1, dxdu=2x
h ( x ) = f ( g ( x ) ) = f ( x 2 + 1 ) = ( x 2 + 1 ) 99 h(x) = f(g(x)) = f(x^{2} + 1) = (x^{2} + 1)^{99} h(x)=f(g(x))=f(x2+1)=(x2+1)99

d y d x = d y d u d u d x = 99 u 98 × 2 x = 198 x u 98 = 198 x ( x 2 + 1 ) 98 \begin{aligned} \frac{\text{d}y}{\text{d}x} &= \frac{\text{d}y}{\text{d}u}\frac{\text{d}u}{\text{d}x} \\ &= 99u^{98} \times 2x \\ &= 198xu^{98} \\ &= 198x(x^{2} + 1)^{98} \\ \end{aligned} dxdy=dudydxdu=99u98×2x=198xu98=198x(x2+1)98

Now you just need to tidy it up by replacing u u u by x 2 + 1 x^{2} + 1 x2+1 to see that we have d y / d x = 198 x ( x 2 + 1 ) 98 \text{d}y/\text{d}x = 198x(x^{2} + 1)^{98} dy/dx=198x(x2+1)98.
使用 x 2 + 1 x^{2} + 1 x2+1 替换 u u u,得到 d y / d x = 198 x ( x 2 + 1 ) 98 \text{d}y/\text{d}x = 198x(x^{2} + 1)^{98} dy/dx=198x(x2+1)98

6. A nasty example (难以处理的例子)

7. Justification of the product rule and the chain rule (乘积法则和链式求导法则的理由)

justification /ˌdʒʌstɪfɪˈkeɪʃn/:n. 正当理由

References

[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/
[2] 普林斯顿微积分读本 (修订版), https://m.ituring.com.cn/book/1623

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2251767.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

飞塔防火墙只允许国内IP访问

飞塔防火墙只允许国内IP访问 方法1 新增地址对象,注意里面已经细分为中国内地、中国香港、中国澳门和中国台湾 方法2 手动新增国内IP的对象组,目前好像一共有8632个,每个对象最多支持600个IP段

深度学习 | pytorch + torchvision + python 版本对应及环境安装

Hi,大家好,我是半亩花海。要让一个基于 torch 框架开发的深度学习模型正确运行起来,配置环境是个重要的问题,本文介绍了 pytorch、torchvision、torchaudio 及 python 的对应版本以及环境安装的相关流程。 目录 一、版本对应 二…

JVM:即时编译器,C2 Compiler,堆外内存排查

1,即时编译器 1.1,基本概念 常见的编译型语言如C,通常会把代码直接编译成CPU所能理解的机器码来运行。而Java为了实现“一次编译,处处运行”的特性,把编译的过程分成两部分,首先它会先由javac编译成通用的…

5G学习笔记之随机接入

目录 1. 概述 2. MSG1 2.1 选择SSB 2.2 选择Preamble Index 2.3 选择发送Preamble的时频资源 2.4 确定RA-RNTI 2.5 确定发送功率 3. MSG2 4. MSG3 5. MSG4 6. 其它 6.1 切换中的随机接入 6.2 SI请求的随机接入 6.3 通过PDCCH order重新建立同步 1. 概述 随机接入…

B站狂神说Mybatis+Spring+SpringMVC整合理解(ssm框架整合)

文章目录 0.写在前面(对mybatis,spring的理解)(不看可跳过)0.1 为什么需要mybatis0.2 为什么需要spring0.3为什么需要springmvc 1.新建ssmbuild数据库2.新建Maven项目3.初始化步骤3.1 配置下载maven依赖,构建资源导出3.2 连接数据库3.3建包&a…

JS的魔法三角:constructor、prototype与__proto__

在JavaScript中,constructor、prototype和__proto__是与对象创建和继承机制紧密相关的三个概念。理解它们之间的关系对于掌握JavaScript的面向对象编程至关重要。下面将详细介绍这个魔法三角: 1. constructor 定义:constructor是一个函数&am…

SQL调优分析200倍性能提升

原始SQL: selectdistinct cert.emp_id fromcm_log cl inner join(selectemp.id as emp_id,emp_cert.id as cert_id fromemployee emp left joinemp_certificate emp_cert on emp.id emp_cert.emp_id whereemp.is_deleted0) cert on (cl.ref_tableEmployee and c…

逆向攻防世界CTF系列42-reverse_re3

逆向攻防世界CTF系列42-reverse_re3 参考:CTF-reverse-reverse_re3(全网最详细wp,超4000字有效解析)_ctfreverse题目-CSDN博客 64位无壳 _int64 __fastcall main(__int64 a1, char **a2, char **a3) {int v4; // [rsp4h] [rbp-…

【韩顺平老师Java反射笔记】

反射 文章目录 基本使用反射机制java程序在计算机有三个阶段反射相关的主要类 反射调用优化Class类的常用方法获取Class对象的6种方式哪些类型有Class对象类加载类加载时机类加载过程图 通过反射获取类的结构信息第一组:java.lang.Class类第二组:java.la…

【热门主题】000075 探索嵌入式硬件设计的奥秘

前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 【热…

Swift实现高效链表排序:一步步解读

文章目录 前言摘要问题描述题解解题思路Swift 实现代码代码分析示例测试与结果 时间复杂度空间复杂度总结关于我们 前言 本题由于没有合适答案为以往遗留问题,最近有时间将以往遗留问题一一完善。 148. 排序链表 不积跬步,无以至千里;不积小流…

mysql系列2—InnoDB数据存储方式

背景 本文将深入探讨InnoDB的底层存储机制,包括行格式、页结构、页目录以及表空间等核心概念。通过全面了解这些基础概念,有助于把握MySQL的存储架构,也为后续深入讨论MySQL的索引原理和查询优化策略奠定了基础。 1.行格式 mysql中数据以行…

vue实现echarts饼图自动轮播

echarts官网:Examples - Apache ECharts echartsFn.ts 把echarts函数封装成一个文件 import * as echarts from "echarts";const seriesData [{"value": 12,"name": "过流报警"},{"value": 102,"name&qu…

【Python数据分析五十个小案例】使用自然语言处理(NLP)技术分析 Twitter 情感

博客主页:小馒头学python 本文专栏: Python爬虫五十个小案例 专栏简介:分享五十个Python爬虫小案例 项目简介 什么是情感分析 情感分析(Sentiment Analysis)是文本分析的一部分,旨在识别文本中传递的情感信息&…

网络安全防护指南:筑牢网络安全防线(5/10)

一、网络安全的基本概念 (一)网络的定义 网络是指由计算机或者其他信息终端及相关设备组成的按照一定的规则和程序对信息收集、存储、传输、交换、处理的系统。在当今数字化时代,网络已经成为人们生活和工作中不可或缺的一部分。它连接了世…

宏海科技募资额有所缩减,最大销售和采购都重度依赖美的集团

《港湾商业观察》施子夫 11月29日,北交所上市审核委员会将召开2024年第24次上市委审议会议,届时将审议武汉宏海科技股份有限公司(以下简称,宏海科技)的首发上会事项。 在上会之前,宏海科技共收到北交所下…

算法日记 36-38day 动态规划

今天把动态规划结束掉,包括子序列以及编辑距离 题目:最长公共子序列 1143. 最长公共子序列 - 力扣(LeetCode) 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 &…

Gopeed 1.6.3 | 不限速下载工具附百度网盘不限速教程

Gopeed是一款高效且易于使用的下载软件。它具有加速下载速度的功能,可以帮助用户更快地下载文件。此外,Gopeed还支持多线程下载,可以同时下载多个文件,提高下载效率。它提供了简洁的界面和简单的操作,方便用户操作和管…

K8S版本和istio版本的对照关系

版本对照关系 下载地址1 下载地址2

【大数据学习 | Spark-SQL】关于RDD、DataFrame、Dataset对象

1. 概念: RDD: 弹性分布式数据集; DataFrame: DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型…