乘积求导法则、除法求导法则和链式求导法则
- 1. Constant multiples of functions (函数的常数倍)
- 2. Sums and differences of functions (函数和与函数差)
- 3. Products of functions via the product rule (通过乘积法则求积函数的导数)
- 4. Quotients of functions via the quotient rule (通过商法则求商函数的导数)
- 5. Composition of functions via the chain rule (通过链式求导法则求复合函数的导数)
- 6. A nasty example (难以处理的例子)
- 7. Justification of the product rule and the chain rule (乘积法则和链式求导法则的理由)
- References
1. Constant multiples of functions (函数的常数倍)
It’s easy to deal with a constant multiple of a function: you just multiply by the constant after you differentiate.
对函数的常数倍进行求导,只需在函数求导后,用常数乘以该函数的导数。
We know the derivative of
x
2
x^2
x2 is
2
x
2x
2x; so the derivative of
7
x
2
7x^2
7x2 is 7
times
2
x
2x
2x, or
14
x
14x
14x.
d d x ( x 2 ) = 2 x \begin{aligned} \frac{\text{d}}{\text{d}x}(x^2) = 2x \end{aligned} dxd(x2)=2x
d d x ( 7 x 2 ) = 7 × d d x ( x 2 ) = 7 × 2 x = 14 x \begin{aligned} \frac{\text{d}}{\text{d}x}(7x^2) = 7 \times \frac{\text{d}}{\text{d}x}(x^2) = 7 \times 2x = 14x \end{aligned} dxd(7x2)=7×dxd(x2)=7×2x=14x
The derivative of
−
x
2
-x^2
−x2 is
−
2
x
-2x
−2x, since you can think of the minus out front as multiplication by -1
.
d d x ( − x 2 ) = − 1 × d d x ( x 2 ) = − 1 × 2 x = − 2 x \begin{aligned} \frac{\text{d}}{\text{d}x}(-x^2) = -1 \times \frac{\text{d}}{\text{d}x}(x^2) = -1 \times 2x = -2x \end{aligned} dxd(−x2)=−1×dxd(x2)=−1×2x=−2x
Similarly, to find the derivative of
13
x
4
13x^4
13x4, multiply 13
by 4
, giving a coefficient of 52
, and then knock the power down by one to get
52
x
3
52x^3
52x3.
d d x ( 13 x 4 ) = 13 × d d x ( x 4 ) = 13 × 4 x 3 = 52 x 3 \begin{aligned} \frac{\text{d}}{\text{d}x}(13x^4) = 13 \times \frac{\text{d}}{\text{d}x}(x^4) = 13 \times 4x^3 = 52x^3 \end{aligned} dxd(13x4)=13×dxd(x4)=13×4x3=52x3
2. Sums and differences of functions (函数和与函数差)
It’s even easier to differentiate sums and differences of functions: just differentiate each piece and then add or subtract.
对函数和与函数差求导,只需对每一部分求导,然后再相加或相减。
d d x ( 3 x 5 − 2 x 2 + 7 x + 2 ) = d d x ( 3 x 5 − 2 x 2 + 7 x 1 / 2 + 2 ) = d d x ( 3 x 5 − 2 x 2 + 7 x − 1 / 2 + 2 ) = d d x ( 3 x 5 ) + d d x ( − 2 x 2 ) + d d x ( 7 x − 1 / 2 ) + d d x ( 2 ) = 3 × d d x ( x 5 ) − 2 × d d x ( x 2 ) + 7 × d d x ( x − 1 / 2 ) + d d x ( 2 ) = 3 × 5 x 4 − 2 × 2 x + 7 × ( − 1 / 2 ) x − 1 / 2 − 1 + 0 = 15 x 4 − 4 x − 7 2 x − 3 / 2 = 15 x 4 − 4 x − 7 2 1 x 3 / 2 = 15 x 4 − 4 x − 7 2 1 x 2 / 2 x 1 / 2 = 15 x 4 − 4 x − 7 2 1 x x \begin{aligned} \frac{\text{d}}{\text{d}x}(3x^5 - 2x^2 + \frac{7}{\sqrt{x}} + 2) &= \frac{\text{d}}{\text{d}x}(3x^5 - 2x^2 + \frac{7}{{x}^{1/2}} + 2) \\ &= \frac{\text{d}}{\text{d}x}(3x^5 - 2x^2 + 7{x}^{-1/2} + 2) \\ &= \frac{\text{d}}{\text{d}x}(3x^5) + \frac{\text{d}}{\text{d}x}(-2x^2) + \frac{\text{d}}{\text{d}x}(7{x}^{-1/2}) + \frac{\text{d}}{\text{d}x}(2) \\ &= 3 \times \frac{\text{d}}{\text{d}x}(x^5) - 2 \times \frac{\text{d}}{\text{d}x}(x^2) + 7 \times \frac{\text{d}}{\text{d}x}({x}^{-1/2}) + \frac{\text{d}}{\text{d}x}(2) \\ &= 3 \times 5x^4 - 2 \times 2x + 7 \times (-1/2){x}^{-1/2 - 1} + 0 \\ &= 15x^4 - 4x - \frac{7}{2}{x}^{-3/2} \\ &= 15x^4 - 4x - \frac{7}{2}\frac{1}{x^{3/2}} \\ &= 15x^4 - 4x - \frac{7}{2}\frac{1}{x^{2/2}x^{1/2}} \\ &= 15x^4 - 4x - \frac{7}{2}\frac{1}{x\sqrt{x}} \\ \end{aligned} dxd(3x5−2x2+x7+2)=dxd(3x5−2x2+x1/27+2)=dxd(3x5−2x2+7x−1/2+2)=dxd(3x5)+dxd(−2x2)+dxd(7x−1/2)+dxd(2)=3×dxd(x5)−2×dxd(x2)+7×dxd(x−1/2)+dxd(2)=3×5x4−2×2x+7×(−1/2)x−1/2−1+0=15x4−4x−27x−3/2=15x4−4x−27x3/21=15x4−4x−27x2/2x1/21=15x4−4x−27xx1
x 5 / 2 = x 4 / 2 x 1 / 2 = x 2 x 1 / 2 = x 2 x x 7 / 2 = x 6 / 2 x 1 / 2 = x 3 x 1 / 2 = x 3 x \begin{aligned} x^{5/2} = x^{4/2}x^{1/2} = x^{2}x^{1/2} = x^{2}\sqrt{x} \\ x^{7/2} = x^{6/2}x^{1/2} = x^{3}x^{1/2} = x^{3}\sqrt{x} \\ \end{aligned} x5/2=x4/2x1/2=x2x1/2=x2xx7/2=x6/2x1/2=x3x1/2=x3x
3. Products of functions via the product rule (通过乘积法则求积函数的导数)
- 乘积法则 (版本 1)
Product rule (version 1): if
h
(
x
)
=
f
(
x
)
g
(
x
)
h(x) = f(x)g(x)
h(x)=f(x)g(x), then
h
′
(
x
)
=
f
′
(
x
)
g
(
x
)
+
f
(
x
)
g
′
(
x
)
h'(x) = f'(x)g(x) + f(x)g'(x)
h′(x)=f′(x)g(x)+f(x)g′(x).
That is, you take the derivative of f f f and multiply it by g g g (not the derivative of g g g). Then you also have to take the derivative of g g g and multiply it by f f f. Finally, add the two things together.
h
(
x
)
=
f
(
x
)
g
(
x
)
=
(
x
5
+
2
x
−
1
)
(
3
x
8
−
2
x
7
−
x
4
−
3
x
)
h(x) = f(x)g(x) = (x^{5} + 2x - 1)(3x^{8} - 2x^{7} - x^4 - 3x)
h(x)=f(x)g(x)=(x5+2x−1)(3x8−2x7−x4−3x)
f
(
x
)
=
x
5
+
2
x
−
1
,
f
′
(
x
)
=
5
x
4
+
2
f(x) = x^{5} + 2x - 1, \ f'(x) = 5x^4 + 2
f(x)=x5+2x−1, f′(x)=5x4+2
g
(
x
)
=
3
x
8
−
2
x
7
−
x
4
−
3
x
,
g
′
(
x
)
=
24
x
7
−
14
x
6
−
4
x
3
−
3
g(x) = 3x^{8} - 2x^{7} - x^4 - 3x, \ g'(x) = 24x^7 - 14x^6 - 4x^3 - 3
g(x)=3x8−2x7−x4−3x, g′(x)=24x7−14x6−4x3−3
h ′ ( x ) = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) = ( 5 x 4 + 2 ) ( 3 x 8 − 2 x 7 − x 4 − 3 x ) + ( x 5 + 2 x − 1 ) ( 24 x 7 − 14 x 6 − 4 x 3 − 3 ) \begin{aligned} h'(x) &= f'(x)g(x) + f(x)g'(x) \\ &= (5x^4 + 2)(3x^{8} - 2x^{7} - x^4 - 3x) + (x^{5} + 2x - 1)(24x^7 - 14x^6 - 4x^3 - 3) \\ \end{aligned} h′(x)=f′(x)g(x)+f(x)g′(x)=(5x4+2)(3x8−2x7−x4−3x)+(x5+2x−1)(24x7−14x6−4x3−3)
- 乘积法则 (版本 2)
We can take the above form of the product rule and make some replacements: first, u u u replaces f ( x ) f(x) f(x), so that d u / d x \text{d}u/\text{d}x du/dx replaces f ′ ( x ) f'(x) f′(x); we also do the same thing with v v v and g ( x ) g(x) g(x).
Product rule (version 2): if
y
=
u
v
y = uv
y=uv, then
d
y
d
x
=
d
u
d
x
v
+
u
d
v
d
x
\frac{\text{d}y}{\text{d}x} = \frac{\text{d}u}{\text{d}x}v + u\frac{\text{d}v}{\text{d}x}
dxdy=dxduv+udxdv.
y
=
u
v
=
(
x
3
+
2
x
)
(
3
x
+
x
+
1
)
y = uv = (x^3 + 2x)(3x + \sqrt{x} + 1)
y=uv=(x3+2x)(3x+x+1)
u
=
x
3
+
2
x
,
d
u
d
x
=
3
x
2
+
2
u = x^3 + 2x, \ \frac{\text{d}u}{\text{d}x} = 3x^2 + 2
u=x3+2x, dxdu=3x2+2
v
=
3
x
+
x
+
1
,
d
v
d
x
=
3
+
1
2
x
−
1
/
2
=
3
+
1
2
x
1
/
2
=
3
+
1
2
x
v = 3x + \sqrt{x} + 1, \ \frac{\text{d}v}{\text{d}x} = 3 + \frac{1}{2}x^{-1/2} = 3 + \frac{1}{2x^{1/2}} = 3 + \frac{1}{2 \sqrt{x}}
v=3x+x+1, dxdv=3+21x−1/2=3+2x1/21=3+2x1
d y d x = d u d x v + u d v d x = ( 3 x 2 + 2 ) ( 3 x + x + 1 ) + ( x 3 + 2 x ) ( 3 + 1 2 x ) \begin{aligned} \frac{\text{d}y}{\text{d}x} &= \frac{\text{d}u}{\text{d}x}v + u\frac{\text{d}v}{\text{d}x} \\ &= (3x^2 + 2)(3x + \sqrt{x} + 1) + (x^3 + 2x)(3 + \frac{1}{2 \sqrt{x}}) \\ \end{aligned} dxdy=dxduv+udxdv=(3x2+2)(3x+x+1)+(x3+2x)(3+2x1)
- 乘积法则 (三个变量)
Product rule (three variables): if
y
=
u
v
w
y = uvw
y=uvw, then
d
y
d
x
=
d
u
d
x
v
w
+
u
d
v
d
x
w
+
u
v
d
w
d
x
\frac{\text{d}y}{\text{d}x} = \frac{\text{d}u}{\text{d}x}vw + u\frac{\text{d}v}{\text{d}x}w + uv\frac{\text{d}w}{\text{d}x}
dxdy=dxduvw+udxdvw+uvdxdw.
Just add up
u
v
w
uvw
uvw three times, but put a
d
/
d
x
\text{d}/\text{d}x
d/dx in front of a different variable in each term. The same trick works for four or more variables, every variable gets differentiated once!
把
u
v
w
uvw
uvw 加三次,但对于每一项,要将
d
/
d
x
\text{d}/\text{d}x
d/dx 放在不同的变量之前。同样的方法适用于四个或更多个变量,每一个变量都要进行一次微分运算。
y
=
u
v
w
=
(
x
2
+
1
)
(
x
2
+
3
x
)
(
x
5
+
2
x
4
+
7
)
y = uvw = (x^2 + 1)(x^2 + 3x)(x^5 + 2x^4 + 7)
y=uvw=(x2+1)(x2+3x)(x5+2x4+7)
u
=
x
2
+
1
,
d
u
d
x
=
2
x
u = x^2 + 1, \ \frac{\text{d}u}{\text{d}x} = 2x
u=x2+1, dxdu=2x
v
=
x
2
+
3
x
,
d
v
d
x
=
2
x
+
3
v = x^2 + 3x, \ \frac{\text{d}v}{\text{d}x} = 2x + 3
v=x2+3x, dxdv=2x+3
w
=
x
5
+
2
x
4
+
7
,
d
w
d
x
=
5
x
4
+
8
x
3
w = x^5 + 2x^4 + 7, \ \frac{\text{d}w}{\text{d}x} = 5x^{4} + 8x^{3}
w=x5+2x4+7, dxdw=5x4+8x3
d y d x = d u d x v w + u d v d x w + u v d w d x = ( 2 x ) ( x 2 + 3 x ) ( x 5 + 2 x 4 + 7 ) + ( x 2 + 1 ) ( 2 x + 3 ) ( x 5 + 2 x 4 + 7 ) + ( x 2 + 1 ) ( x 2 + 3 x ) ( 5 x 4 + 8 x 3 ) \begin{aligned} \frac{\text{d}y}{\text{d}x} &= \frac{\text{d}u}{\text{d}x}vw + u\frac{\text{d}v}{\text{d}x}w + uv\frac{\text{d}w}{\text{d}x} \\ &= (2x)(x^2 + 3x)(x^5 + 2x^4 + 7) + (x^2 + 1)(2x + 3)(x^5 + 2x^4 + 7) + (x^2 + 1)(x^2 + 3x)(5x^{4} + 8x^{3}) \\ \end{aligned} dxdy=dxduvw+udxdvw+uvdxdw=(2x)(x2+3x)(x5+2x4+7)+(x2+1)(2x+3)(x5+2x4+7)+(x2+1)(x2+3x)(5x4+8x3)
4. Quotients of functions via the quotient rule (通过商法则求商函数的导数)
- 除法法则 (版本 1)
Quotient rule (version 1): if
h
(
x
)
=
f
(
x
)
g
(
x
)
h(x) = \frac{f(x)}{g(x)}
h(x)=g(x)f(x), then
h
′
(
x
)
=
f
′
(
x
)
g
(
x
)
−
f
(
x
)
g
′
(
x
)
(
g
(
x
)
)
2
h'(x) = \frac{f'(x)g(x) \ - \ f(x)g'(x)}{(g(x))^2}
h′(x)=(g(x))2f′(x)g(x) − f(x)g′(x).
Notice that the numerator of the right-hand fraction is the same as the numerator in the product rule, except with a minus instead of a plus.
除了正号变成了负号外,等号右边分式的分子与乘积法则中的分子是一样的。
h
(
x
)
=
f
(
x
)
/
g
(
x
)
=
2
x
3
−
3
x
+
1
x
5
−
8
x
3
+
2
h(x) = f(x)/g(x) = \frac{2x^{3} - 3x + 1}{x^{5} - 8x^{3} + 2}
h(x)=f(x)/g(x)=x5−8x3+22x3−3x+1
f
(
x
)
=
2
x
3
−
3
x
+
1
,
f
′
(
x
)
=
6
x
2
−
3
f(x) =2x^{3} - 3x + 1, \ f'(x) = 6x^2 - 3
f(x)=2x3−3x+1, f′(x)=6x2−3
g
(
x
)
=
x
5
−
8
x
3
+
2
,
g
′
(
x
)
=
5
x
4
−
24
x
2
g(x) = x^{5} - 8x^{3} + 2, \ g'(x) = 5x^4 - 24x^2
g(x)=x5−8x3+2, g′(x)=5x4−24x2
h ′ ( x ) = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) ( g ( x ) ) 2 = ( 6 x 2 − 3 ) ( x 5 − 8 x 3 + 2 ) − ( 2 x 3 − 3 x + 1 ) ( 5 x 4 − 24 x 2 ) ( x 5 − 8 x 3 + 2 ) 2 \begin{aligned} h'(x) &= \frac{f'(x)g(x) \ - \ f(x)g'(x)}{(g(x))^2} \\ &= \frac{(6x^2 - 3)(x^{5} - 8x^{3} + 2) \ - \ (2x^{3} - 3x + 1)(5x^4 - 24x^2)}{(x^{5} - 8x^{3} + 2)^2} \\ \end{aligned} h′(x)=(g(x))2f′(x)g(x) − f(x)g′(x)=(x5−8x3+2)2(6x2−3)(x5−8x3+2) − (2x3−3x+1)(5x4−24x2)
- 除法法则 (版本 2)
Quotient rule (version 2): if
y
=
u
v
y = \frac{u}{v}
y=vu, then
d
y
d
x
=
d
u
d
x
v
−
u
d
v
d
x
v
2
\frac{\text{d}y}{\text{d}x} = \frac{\frac{\text{d}u}{\text{d}x}v \ - \ u\frac{\text{d}v}{\text{d}x}}{v^2}
dxdy=v2dxduv − udxdv.
y
=
u
/
v
=
3
x
2
+
1
2
x
8
−
7
y = u/v = \frac{3x^{2} + 1}{2x^{8} - 7}
y=u/v=2x8−73x2+1
u
=
3
x
2
+
1
,
d
u
d
x
=
6
x
u =3x^{2} + 1, \ \frac{\text{d}u}{\text{d}x} = 6x
u=3x2+1, dxdu=6x
v
=
2
x
8
−
7
,
d
v
d
x
=
16
x
7
v = 2x^{8} - 7, \ \frac{\text{d}v}{\text{d}x} = 16x^{7}
v=2x8−7, dxdv=16x7
d y d x = d u d x v − u d v d x v 2 = ( 6 x ) ( 2 x 8 − 7 ) − ( 3 x 2 + 1 ) ( 16 x 7 ) ( 2 x 8 − 7 ) 2 \begin{aligned} \frac{\text{d}y}{\text{d}x} &= \frac{\frac{\text{d}u}{\text{d}x}v \ - \ u\frac{\text{d}v}{\text{d}x}}{v^2} \\ &= \frac{(6x)(2x^{8} - 7) \ - \ (3x^{2} + 1)(16x^{7})}{(2x^{8} - 7)^2} \\ \end{aligned} dxdy=v2dxduv − udxdv=(2x8−7)2(6x)(2x8−7) − (3x2+1)(16x7)
5. Composition of functions via the chain rule (通过链式求导法则求复合函数的导数)
- 链式求导法则 (版本 1)
Chain rule (version 1): if
h
(
x
)
h(x)
h(x) =
f
(
g
(
x
)
)
f(g(x))
f(g(x)), then
h
′
(
x
)
=
f
′
(
g
(
x
)
)
g
′
(
x
)
h'(x) = f'(g(x))g'(x)
h′(x)=f′(g(x))g′(x).
f
(
u
)
=
u
99
,
f
′
(
u
)
=
99
u
98
f(u) = u^{99}, \ f'(u) = 99u^{98}
f(u)=u99, f′(u)=99u98
g
(
x
)
=
x
2
+
1
,
g
′
(
x
)
=
2
x
g(x) = x^{2} + 1, \ g'(x) = 2x
g(x)=x2+1, g′(x)=2x
h
(
x
)
=
f
(
g
(
x
)
)
=
f
(
x
2
+
1
)
=
(
x
2
+
1
)
99
h(x) = f(g(x)) = f(x^{2} + 1) = (x^{2} + 1)^{99}
h(x)=f(g(x))=f(x2+1)=(x2+1)99
h ′ ( x ) = f ′ ( g ( x ) ) g ′ ( x ) = 99 ( g ( x ) ) 98 ( 2 x ) = 99 ( x 2 + 1 ) 98 ( 2 x ) = 198 x ( x 2 + 1 ) 98 \begin{aligned} h'(x) &= f'(g(x))g'(x) \\ &= 99(g(x))^{98}(2x) \\ &= 99(x^{2} + 1)^{98}(2x) \\ &= 198x(x^{2} + 1)^{98} \\ \end{aligned} h′(x)=f′(g(x))g′(x)=99(g(x))98(2x)=99(x2+1)98(2x)=198x(x2+1)98
- 链式求导法则 (版本 2)
Chain rule (version 2): if
y
y
y is a function of
u
u
u, and
u
u
u is a function of
x
x
x, then
d
y
d
x
=
d
y
d
u
d
u
d
x
\frac{\text{d}y}{\text{d}x} = \frac{\text{d}y}{\text{d}u}\frac{\text{d}u}{\text{d}x}
dxdy=dudydxdu.
y
=
u
99
,
d
y
d
u
=
99
u
98
y = u^{99}, \ \frac{\text{d}y}{\text{d}u} = 99u^{98}
y=u99, dudy=99u98
u
=
x
2
+
1
,
d
u
d
x
=
2
x
u = x^{2} + 1, \ \frac{\text{d}u}{\text{d}x} = 2x
u=x2+1, dxdu=2x
h
(
x
)
=
f
(
g
(
x
)
)
=
f
(
x
2
+
1
)
=
(
x
2
+
1
)
99
h(x) = f(g(x)) = f(x^{2} + 1) = (x^{2} + 1)^{99}
h(x)=f(g(x))=f(x2+1)=(x2+1)99
d y d x = d y d u d u d x = 99 u 98 × 2 x = 198 x u 98 = 198 x ( x 2 + 1 ) 98 \begin{aligned} \frac{\text{d}y}{\text{d}x} &= \frac{\text{d}y}{\text{d}u}\frac{\text{d}u}{\text{d}x} \\ &= 99u^{98} \times 2x \\ &= 198xu^{98} \\ &= 198x(x^{2} + 1)^{98} \\ \end{aligned} dxdy=dudydxdu=99u98×2x=198xu98=198x(x2+1)98
Now you just need to tidy it up by replacing
u
u
u by
x
2
+
1
x^{2} + 1
x2+1 to see that we have
d
y
/
d
x
=
198
x
(
x
2
+
1
)
98
\text{d}y/\text{d}x = 198x(x^{2} + 1)^{98}
dy/dx=198x(x2+1)98.
使用
x
2
+
1
x^{2} + 1
x2+1 替换
u
u
u,得到
d
y
/
d
x
=
198
x
(
x
2
+
1
)
98
\text{d}y/\text{d}x = 198x(x^{2} + 1)^{98}
dy/dx=198x(x2+1)98。
6. A nasty example (难以处理的例子)
7. Justification of the product rule and the chain rule (乘积法则和链式求导法则的理由)
justification /ˌdʒʌstɪfɪˈkeɪʃn/:n. 正当理由
References
[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/
[2] 普林斯顿微积分读本 (修订版), https://m.ituring.com.cn/book/1623