redis基础spark操作redis

news2025/3/20 15:55:23

Redis内存淘汰策略

将Redis用作缓存时,如果内存空间用满,就会自动驱逐老的数据。

为什么要使用内存淘汰策略呢?

当海量数据涌入redis,导致redis装不下了咋办,我们需要根据redis的内存淘汰策略,淘汰一些不那么重要的key,来满足大量数据的存入。

Redis六种淘汰策略
  • noeviction:当内存使用达到阈值的时候,所有引起申请内存的命令会报错。
  • allkeys-lru:在主键空间中,优先移除最近未使用的key。(推荐)
  • volatile-lru:在设置了过期时间的键空间中,优先移除最近未使用的key。
  • allkeys-random:在主键空间中,随机移除某个key。
  • volatile-random:在设置了过期时间的键空间中,随机移除某个key。
  • volatile-ttl:在设置了过期时间的键空间中,具有更早过期时间的key优先移除。
如何配置Redis淘汰策略
  1. 找到redis.conf文件

设置Redis 内存大小的限制,我们可以设置maxmemory ,当数据达到限定大小后,会选择配置的策略淘汰数据 比如:maxmemory 300mb。

  1. 设置内存淘汰具体使用那种策略


设置Redis的淘汰策略。比如:maxmemory-policy volatile-lru 或allkeys-lru

127.0.0.1:6379> CONFIG GET maxmemory-policy
1) "maxmemory"
2) "0"
127.0.0.1:6379> CONFIG SET maxmemory-policy allkeys-lru
OK
127.0.0.1:6379> CONFIG GET maxmemory-policy
1) "maxmemory-policy"
2) "allkeys-lru"
redis基本操作

查看连接数
CLIENT LIST获取客户端列表
CLIENT SETNAME 设置当前连接点redis的名称
CLIENT GETNAME 查看当前连接的名称
CLIENT KILL ip:port 杀死指定连接

查看资源占用情况

info查看全部
info memory查看资源占用情况

# Memory
used_memory:13490096 //数据占用了多少内存(字节)
used_memory_human:12.87M //数据占用了多少内存(带单位的,可读性好)
used_memory_rss:13490096  //redis占用了多少内存
used_memory_peak:15301192 //占用内存的峰值(字节)
used_memory_peak_human:14.59M //占用内存的峰值(带单位的,可读性好)
used_memory_lua:31744  //lua引擎所占用的内存大小(字节)
mem_fragmentation_ratio:1.00  //内存碎片率
mem_allocator:libc //redis内存分配器版本,在编译时指定的。有libc、jemalloc、tcmalloc这3种。
total_system_memory//整个系统内存
used_memory_dataset_perc //数据占用的内存大小的百分比,100%*(used_memory_dataset/(used_memory-used_memory_startup))
used_memory_peak_perc //使用内存达到峰值内存的百分比,即(used_memory/ used_memory_peak) *100%

--bigkeys可以查看下那些key比较占空间
redis-cli -c -h redis-recommend1.nonolive.local --bigkeys

键的数据结构类型

type key
如果键hello是字符串类型,则返回string;如果键不存在,则返回none

键重命名

rename key newkey
renamenx key newkey只有newkey不存在时才会被覆盖

查找key

不要使用keys xxx*查找,keys 算法是遍历算法,复杂度是 O(n),如果实例中有千万级以上的 key,这个指令就会导致 Redis 服务卡顿,所有读写 Redis 的其它的指令都会被延后甚至会超时报错,可能会引起缓存雪崩甚至数据库宕机。
生产环境禁用
通常使用Scan模糊查找
scan 参数提供了三个参数,第一个是 cursor 整数值,第二个是 key 的正则模式,第三个是遍历的 limit hint。第一次遍历时,cursor 值为 0,然后将返回结果中第一个整数值作为下一次遍历的 cursor。一直遍历到返回的 cursor 值为 0 时结束。
SSCAN 命令用于迭代集合(set)键中的元素。
HSCAN 命令用于迭代哈希(hash)键中的键值对。
ZSCAN 命令用于迭代有序集合(sorted set)中的元素(包括元素成员和元素分值)

127.0.0.1:6379> scan 0 match key99* count 1000
1) "13976"        # 第一次迭代时返回的游标
2)  1) "key9911"
    2) "key9974"
    3) "key9994"
    4) "key9910"
    5) "key9907"
    6) "key9989" 

127.0.0.1:6379> scan 13976 match key99* count 1000 # 第二次查就使用第一次返回的游标

这里的count 1000不是限定的数量,而是限定服务器单次遍历的字典槽位数量 (约等于),所以只要第一条有数,那就是有数据的。

然后可以通过key来核对数据

//type返回给定key的value类型
type key
返回 none 表示不存在key。string字符类型,list 链表类型 set 无序集合类型

//get返回给定key的value
get key
删除操作

删除前看一下是否存在:exists key
删除单个key: del key
删除所有key: flushdb

批量模糊删除:
如果需要批量删除,例如想一次性删除key为(redis_key1,redis_key2,redis_key3……)的这么一批redis_key,
退出redis客户端,直接在shell中使用xargs参数实现,
xargs 是一个强有力的命令,它能够捕获一个命令的输出,然后传递给另外一个命令。
如果需要指定数据库,需要用到 -n 数据库编号 参数,下面是删除 2数据库中 redis_key开头的键:
redis-cli -n 数据库名(0-15) keys redis_key*|xargs redis-cli -n 数据库名(0-15) del
例子:
redis-cli -h 127.0.0.1 -p 6379 keys "redis_key*"|xargs redis-cli -h 127.0.0.1 -p 6379 del
补充的几个参数:
redis-cli keys "mailspec*" | xargs -r -t -n1 del
补充1:xargs命令后需加上参数-r,不然当keys的数量为0时,就会报错 (error) ERR wrong number of arguments for ‘del’ command
补充2:xargs命令后需加上参数-n1,不然当集群情况keys的数量大于1时,可能会报错 (error) CROSSSLOT Keys in request don’t hash to the same slot
补充3:不加-t也可以,加上-t会输出每次删除的内容,不加则不输出删除的内容,但还是会输出每次删除的key的数量
建议还是不要用keys,用scan模糊匹配更好些。

注意

del删除很大量的数据会把redis阻塞,导致其他命令无法执行。
和使用keys查找数据一样的结果。
生产环境禁用
建议使用unlink和scan异步来删,
redis-cli -h [ip] -p [port] -a [password] -n [index] --scan --pattern 'User:*' | xargs redis-cli -h [ip] -p [port] -a [password] -n [index] unlink
例如:
redis-cli -c -h redis-recommend1.nonolive.local --scan --pattern "REC_RECALL_OUTLINE_20210721*"|xargs -r -t -n1 redis-cli -c -h redis-recommend1.nonolive.local unlink
有时候数据模糊查找也太大,那就需要设置执行时间,用timeout删几分钟停一会儿再删几分钟。
使用timeout
timeout 300 redis-cli -c -h redis-recommend1.nonolive.local --scan --pattern "REC_RECALL_OUTLINE_20210721*"|xargs -r -t -n1 redis-cli -c -h redis-recommend1.nonolive.local unlink

unlink删除每删除一次会开一个redis连接,有些公司不允许开太多连接,那么也不能用unlink来删,只能重写一次数据把key的过期时间调为0。

有时候写入数据的时候报错:
WRONGTYPE Operation against a key holding the wrong kind of value
意思是写入的数据格式有问题,如果当前数据有问题就需要调整当前数据的格式,如果当前数据没问题,是因为redis中存在不同类型的数据,比如写入是hmset的hash类型,redis中存在相同的key的value格式为字符串,那么需要先删除这些key(批量删除或者直接删除),再写入

redis过期命令(key)

Setex
指定的 key 设置值及其过期时间。如果 key 已经存在, SETEX 命令将会替换旧的值。
redis 127.0.0.1:6379> SETEX KEY_NAME TIMEOUT VALUE

Expire
设置 key 的过期时间,key 过期后将不再可用。单位以秒计。
redis 127.0.0.1:6379> Expire KEY_NAME TIME_IN_SECONDS

TTL
Redis TTL 命令以秒为单位返回 key 的剩余过期时间。key不存在返回-2,存在,返回-1,否则反回剩余生存时间。
redis 127.0.0.1:6379> TTL KEY_NAME

PERSIST
移除key的过期时间,key将持久保持:PERSIST key

hash数据结构常用命令

批量设置或获取field-value
Redis Hmset 命令用于同时将多个 field-value (字段-值)对设置到哈希表中。
此命令会覆盖哈希表中已存在的字段。
如果哈希表不存在,会创建一个空哈希表,并执行 HMSET 操作。
redis 127.0.0.1:6379> HMSET KEY_NAME FIELD1 VALUE1 ...FIELDN VALUEN
如果用python写入,value就是一个字典。

Redis Hmget 命令用于返回哈希表中,一个或多个给定字段的值。
如果指定的字段不存在于哈希表,那么返回一个 nil 值。
redis 127.0.0.1:6379> HMGET KEY_NAME FIELD1...FIELDN

设置值
Redis Hset 命令和Hmset类似,但是只能给一个field-value (字段-值)赋值。
如果哈希表不存在,一个新的哈希表被创建并进行 HSET 操作。
如果字段已经存在于哈希表中,旧值将被覆盖。
redis 127.0.0.1:6379> HSET KEY_NAME FIELD VALUE

获取所有的field、value
Redis Hgetall 命令用于返回哈希表中,所有的字段和值。
在返回值里,紧跟每个字段名(field name)之后是字段的值(value),所以返回值的长度是哈希表大小的两倍。
redis 127.0.0.1:6379> HGETALL KEY_NAME

获取值hget key field
redis 127.0.0.1:6379> HGET KEY_NAME FIELD_NAME

判断field是否存在
hexists key field

字段值加上指定增量值
Redis Hincrby
如果哈希表的 key 不存在,一个新的哈希表被创建并执行 HINCRBY 命令。
如果指定的字段不存在,那么在执行命令前,字段的值被初始化为 0 。
对一个储存字符串值的字段执行 HINCRBY 命令将造成一个错误。
redis 127.0.0.1:6379> HINCRBY KEY_NAME FIELD_NAME INCR_BY_NUMBER

字段值加上指定小数增量值
Redis Hincrbyfloat
命令用于为哈希表中的字段值加上指定浮点数增量值。

spark连接redis
几种连接方法
单例模式:静态内部类

import org.apache.commons.pool2.impl.GenericObjectPoolConfig
import redis.clients.jedis.JedisPool
import redis.clients.jedis.JedisCluster
import redis.clients.jedis.HostAndPort

import java.util

/**
 * redis pool
 */
object RedisPool {

  val poolConfig = new GenericObjectPoolConfig()
  poolConfig.setMaxIdle(10)          // 最大连接数
  poolConfig.setMaxTotal(1000)       // 最大空闲连接数
  poolConfig.setMaxWaitMillis(1000)  // 最大等待时间
  poolConfig.setTestOnBorrow(true)   // 检查连接可用性, 确保获取的redis实例可用

  val host="redis-recommend.mildom.local"
  val PORT = 6379

  private lazy val jedisPool = new JedisPool(poolConfig, host, PORT)

  def getJedis() = {
    val jedis = jedisPool.getResource //获取连接池连接
    jedis
  }
}

分布式Jedispool

import redis.clients.jedis.JedisCluster
import redis.clients.jedis.HostAndPort

import java.util
/**
 * redis pool
 */
object RedisClusterPool {

  val host="redis-recommend.mildom.local"
  val PORT = 6379

  private val jedisClusterNodes = new util.HashSet[HostAndPort]()
  jedisClusterNodes.add(new HostAndPort(host, PORT))

  def getJedis() = {
    lazy val jedisCluster = new JedisCluster(jedisClusterNodes)
    jedisCluster
  }
}

spark写入redis
sparksql任务写入redis

//随机给一个过期时间用于测试
    val rng = new scala.util.Random
//df_result结构为(redis_key,redis_value)

    df_result.rdd.repartition(50).foreachPartition(partition=>{
      val jedis = RedisClusterPool.getJedis()
      partition.foreach(v=>{
        val redisKey=v(0).toString
        val redisValue=v(1).toString
        if (redisKey.length>0) {
          jedis.set(redisKey, redisValue)
          jedis.expire(redisKey, rng.nextInt(500))
        }
        else{
          println("no data")
        }
      })})

hmset 之类的hash格式在python中写入dict即可,scala中需要把scala的map转化成java的map,dataframe中可以保存map格式的数据,df转rdd时使用getAs写一下Map[...,...]类型,否则Map中的类型无法自动识别。
spark sql functions中提供了map方法,直接选取两列可以转为一个scala map。

  val df_result = sparkSession.sql(sql)
      .filter("region is not null and host_id is not null")
      .repartition(30)
      .withColumn("redis_key", lit(redis_key))
      .select(col("redis_key"), map(col("region"), col("host_id")).alias("redis_value"))
      .toDF("redis_key","redis_value")

    df_result.rdd.repartition(30).foreachPartition(partition=>{
      val jedis = nn_RedisClusterPool.getJedis()
      partition.foreach(v=>{
        val redisKey=v.getAs[String]("redis_key").toString
        import scala.collection.JavaConverters._
        // 同样将scala的map转换为Java的map存入redis中
        val map =  v.getAs[Map[String,String]]("redis_value")
        val redisValue_map: java.util.Map[String, String] = map.asJava
        if (redisKey.length>0) {
          try {
            jedis.hmset(redisKey, redisValue_map)
            jedis.expire(redisKey, seconds + rng.nextInt(5000))
          }
          catch {
            case e:Exception => e.printStackTrace()
          }
        }
        else{
          println("no data")
        }
      })})
spark streaming写入redis
//导入上面的redispool
import utils.stream.RedisClusterPool
val jedis = RedisClusterPool.getJedis()

stream.repartition(30).foreachRDD(rdd => {
val topic_expose =消费kafka曝光数据和其他离线数据组合

    if (topic_expose.count()>0){
      topic_expose.rdd.collect().foreach(v=>{
      jedis.hset("user:bought:data:"+v(0)+":"+v(1), "exposeCount", jedis.sadd("purchase_expose_num",v(0).toString+":"+v(2).toString).toString)
"exposeCount", 1)
     jedis.expire("user:bought:data:"+v(0)+":"+v(1),seconds)
        })
      }
    })

spark3.0亲测可用,但是topic_expose.rdd.collect()转化成数组写入redis需要先把数据拿到driver端,偶尔sparkstreaming的实时小数据任务可以,如果是离线或实时的大数据集,造成的shuffle和内存消耗是不可接受的。

spark在foreachRDD中初始化外部连接也有一些注意点,由于在foreachRDD中初始化了jedis,但是后续写入redis的时候也要用到foreach一条条数据往里面写,还是会有序列化的error,如果在foreach中初始化,非常浪费资源,也没有必要。
通常的做法是使用foreachPartition,在每个partition中初始化外部数据源。
正常写法:

import utils.stream.RedisClusterPool

stream.repartition(100).foreachRDD(rdd =>{
  rdd.foreachPartion(partition=>{
    val topic_expose =消费kafka曝光数据和其他离线数据组合(组合了partition)
    val jedis = RedisClusterPool.getJedis()
    topic_expose.rdd.foreach(x=>{
    //用redis中的set,以去重的方式写入redis
    jedis.hset("user:bought:data:"+v(0)+":"+v(1), "exposeCount", jedis.sadd("purchase_expose_num",v(0).toString+":"+v(2).toString).toString)
    "exposeCount", 1)
    //设置过期时间
    jedis.expire("user:bought:data:"+v(0)+":"+v(1),seconds)
    })
  })
最后编辑于:2024-11-14 21:10:57


喜欢的朋友记得点赞、收藏、关注哦!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2251397.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++学习日记---第14天(蓝桥杯备赛)

笔记复习 1.对象的初始化和清理 对象的初始化和清理是两个非常重要的安全问题,一个对象或者变量没有初始状态,对其使用后果是未知,同样的使用完一个对象或者变量,没有及时清理,也会造成一定的安全问题 构造函数&…

Unity ShaderLab 实现3D物体描边

实现思路: 给物体添加第二个材质球,在shader的顶点着色器中使顶点的位置变大,然后在片元着色器中输出描边颜色。 shader Graph实现如下: ShaderLab实现如下: Shader "Custom/Outline" {Properties{[HDR]_…

【HarmonyOS NEXT】ACL 受限权限申请

关键词:受限开放权限、ACL、鸿蒙 在鸿蒙应用开发过程中,部分权限被受到限制(如悬浮窗开发、读取联系人数据、读取公共目录音频文件等权限),但是在我们的应用开发过程中又不得不使用该权限时可向华为申请受限权限&#…

南京仁品耳鼻喉专科医院:12月启动公益义诊月

专业医疗资源送至“家门口”!南京仁品耳鼻喉专科医院启动公益义诊月 随着2024年即将步入尾声,南京仁品耳鼻喉医院为回馈社会,提升公众健康福祉,将于12月隆重推出“三甲专家公益义诊月”活动。此次活动旨在通过汇聚众多耳鼻喉领域…

【UE5 C++课程系列笔记】06——定时器的基本使用

目标 使用定时器每秒调用函数打印一句日志信息,并在调用一定次数后停止定时器。 步骤 1. 新建一个Actor类,这里命名为 2. 先在“TimerActor.cpp”中获取定时器管理器 使用定时器管理器来设置定时器,该定时器在2s后启动,然后每…

数据分析的尽头是web APP?

数据分析的尽头是web APP? 在做了一些数据分析的项目,也制作了一些数据分析相关的web APP之后,总结自己的一些想法和大家分享。 1.web APP是呈现数据分析结果的另外一种形式。 数据分析常见的结果是数据分析报告,可以是PPT或者…

看不见的彼方:交换空间——小菜一碟

有个蓝色的链接,先去看看两年前的题目的write up (https://github.com/USTC-Hackergame/hackergame2022-writeups/blob/master/official/%E7%9C%8B%E4%B8%8D%E8%A7%81%E7%9A%84%E5%BD%BC%E6%96%B9/README.md) 从别人的write up中了解到&…

以达梦为数据库底座时部署的微服务页面报乱码,调整兼容模式

1.问题描述 部署微服务,文件、代码是延用的mysql类型的,部署前做了部分适配,但是在使用dm数据库进行安装的服务在页面上查询出的数据却都是乱码 2.查询官网,注意到一个参数COMPATIBLE_MODE兼容模式的配置 考虑是延用mysql&…

K2升班卷(C++ 3道题)

目录 1.匹配 题目背景 题目描述 输入格式 输出格式 输入输出样例 说明/提示 样例 1 解释 数据规模与约定 提示 2.乘方 题目描述 输入格式 输出格式 输入输出样例 数据规模与约定 3.缺水的王国 题目描述 输入格式 输出格式 输入输出样例 说明/提示 样例解…

Redis(4):主从复制

一、主从复制概述 主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(master),后者称为从节点(slave);数据的复制是单向的,只能由主节点到从节点。   默认情况下,每台Redis…

Educator头歌:离散数学 - 图论

第1关&#xff1a;图的概念 任务描述 本关任务&#xff1a;学习图的基本概念&#xff0c;完成相关练习。 相关知识 为了完成本关任务&#xff0c;你需要掌握&#xff1a;图的概念。 图的概念 1.一个图G是一个有序三元组G<V,R,ϕ>&#xff0c;其中V是非空顶点集合&am…

linux模拟HID USB设备及wireshark USB抓包配置

文章目录 1. 内核配置2. 设备配置附 wireshark USB抓包配置 linux下模拟USB HID设备的简单记录&#xff0c;其他USB设备类似。 1. 内核配置 内核启用USB Gadget&#xff0c;使用fs配置usb device信息。 Device Drivers ---> [*] USB support ---><*> USB …

Trimble X12助力电力管廊数据采集,为机器人巡视系统提供精准导航支持

地下电缆是一个城市重要的基础设施&#xff0c;它不仅具有规模大、范围广、空间分布复杂等特点&#xff0c;更重要的是它还承担着信息传输、能源输送等与人们生活息息相关的重要功能&#xff0c;也是一个城市赖以生存和发展的物质基础。 01、项目概述 本次项目是对某区域2公里左…

Mybatis:CRUD数据操作之多条件查询及动态SQL

Mybatis基础环境准备请看&#xff1a;Mybatis基础环境准备 本篇讲解Mybati数据CRUD数据操作之多条件查询 1&#xff0c;编写接口方法 在 com.itheima.mapper 包写创建名为 BrandMapper 的接口。在 BrandMapper 接口中定义多条件查询的方法。 而该功能有三个参数&#xff0c;…

嵌入式硬件实战基础篇(四)多路直流稳压电源

设计一个多路直流稳压电源 要求设计制作一个多路输出直流稳压电源,可将220 V / 5 0HZ交流电转换为5路直流稳压输出。具体要求&#xff1a; 输出直流电压 12V&#xff0c; 5V;和一路输出3- 15V连续可调直流稳压电源: 输出电流Iom500mA; 稳压系数 Sr≤0.05;

# MySql字符集报错

MySql报 java.sql.SQLException: Incorrect string value 乱码解决方法 文章目录 MySql报 java.sql.SQLException: Incorrect string value 乱码解决方法修改数据库字符集和排序规则检查数据库字符集和排序规则修改数据库字符集和排序规则&#xff08;谨慎操作&#xff09;修改…

CDAF / PDAF 原理 | PDAF、CDAF 和 LAAF 对比 | 图像清晰度评价指标

注&#xff1a;本文为 “CDAF / PDAF 原理 | PDAF、CDAF 和 LAAF 对比 | 图像清晰度评价指标” 几篇相关文章合辑。 文章中部分超链接异常、图片模糊限于引用原文原状。 相机自动对焦原理 TriumphRay 于 2020-01-16 18:59:41 发布 凸透镜成像原理 这一部分大家中学应该就学过…

用MATLAB符号工具建立机器人的动力学模型

目录 介绍代码功能演示拉格朗日方法回顾求解符号表达式数值求解 介绍 开发机器人过程中经常需要用牛顿-拉格朗日法建立机器人的动力学模型&#xff0c;表示为二阶微分方程组。本文以一个二杆系统为例&#xff0c;介绍如何用MATLAB符号工具得到微分方程表达式&#xff0c;只需要…

堆排序(含证明)

引言 前面我们讲过堆的基本操作的实现&#xff0c;现在给定一个int类型的数组&#xff0c;里面存放的数据是无序的&#xff0c;我们如何利用堆的思想来实现数组内数据的升序排列或降序排列呢&#xff1f; 通过前面讲到的堆的实现&#xff0c;我们可以想到&#xff0c;我们再开…

前海湾地铁的腾通数码大厦背后的临时免费停车点探寻

临时免费停车点&#xff1a;前海湾地铁的腾通数码大厦背后的桂湾大街&#xff0c;目前看不仅整条桂湾大街停了​车&#xff0c;而且还有工地餐点。可能是这个区域还是半工地状态&#xff0c;故暂时还不会有​罚单的情况出现。 中建三局腾讯数码大厦项目部A栋 广东省深圳市南山…