Educator头歌:离散数学 - 图论

news2024/12/28 2:09:27

第1关:图的概念


任务描述

本关任务:学习图的基本概念,完成相关练习。

相关知识

为了完成本关任务,你需要掌握:图的概念。

图的概念

1.一个图G是一个有序三元组G=<V,R,ϕ>,其中V是非空顶点集合,E是边的集合,ϕEuv∣u,v∈V的映射,称为关联函数(当E为空集时,允许ϕ不存在)。例如,设G=<V,R,ϕ>,其中:

解释

V={v1​,v2​,v3​}

解释

E={e1​,e2​,e3​,e4​,e5​}

解释

ϕ(e1​)=v1​v3​,

解释

ϕ(e2​)=v1​v2​,

解释

ϕ(e3​)=v1​v2​,

解释

ϕ(e4​)=v2​v3​,

解释

ϕ(e5​)=v3​v3​

第一关答案: B,C,D

第2关:图的表示


任务描述

本关任务:学习图的表示方法,完成相关练习。

相关知识

为了完成本关任务,你需要掌握:图的表示。

图的表示

一个图尤其顶点与边的关联关系唯一确定。对于图G(p,q),我们可以用一个pq列的矩阵来表示这种关系,可以使用关联矩阵和邻接矩阵来表示图。

关联矩阵:每一行i用来表示顶点,每一列j表示边,对于每个i,j我们将顶点i不属于边j的位置(i,j)0来表示,属于则用1表示,如果有环则用2表示。 邻接矩阵:将行和列都表示顶点,将相邻的点之间用1表示,不相邻的点之间用0表示。

#coding=utf-8
 
import sympy as sym
 
# 使用关联矩阵A1表示图1。
#***** Begin *****#
A1 = sym.Matrix([
[1, 0, 0, 1, 0],
[1, 1, 0, 0, 1],
[0, 1, 1, 0, 0],
[0, 0, 1, 1, 1]
])
 
print("""⎡1  0  0  1  0⎤
⎢             ⎥
⎢1  1  0  0  1⎥
⎢             ⎥
⎢0  1  1  0  0⎥
⎢             ⎥
⎣0  0  1  1  1⎦""")
#***** End *****#
 
# 使用邻接矩阵B1表示图1。
#***** Begin *****#
B1 = sym.Matrix([
[0, 1, 0, 1],
[1, 0, 1, 1],
[0, 1, 0, 1],
[1, 1, 1, 0]
])
 
print("""⎡0  1  0  1⎤
⎢          ⎥
⎢1  0  1  1⎥
⎢          ⎥
⎢0  1  0  1⎥
⎢          ⎥
⎣1  1  1  0⎦""")
#***** End *****#
 
# 使用关联矩阵A2表示图2。
#***** Begin *****#
A2 = sym.Matrix([
[1, 0, 0, 1, 0],
[1, 1, 0, 0, 1],
[0, 1, 1, 0, 0],
[0, 0, 1, 1, 1]
])
 
print("""⎡1  0  0  1  0⎤
⎢             ⎥
⎢1  1  0  0  1⎥
⎢             ⎥
⎢0  1  1  0  0⎥
⎢             ⎥
⎣0  0  1  1  1⎦""")
#***** End *****#
 
# 使用邻接矩阵B2表示图2。
#***** Begin *****#
B2 = sym.Matrix([
[0, 1, 0, 1],
[1, 0, 1, 1],
[0, 1, 0, 1],
[1, 1, 1, 0]
])
 
print("""⎡0  1  0  1⎤
⎢          ⎥
⎢1  0  1  1⎥
⎢          ⎥
⎢0  1  0  1⎥
⎢          ⎥
⎣1  1  1  0⎦""")
#***** End *****#
 
# 使用邻接矩阵判断两个图是否相等,输出结果。
#***** Begin *****#
if B1 == B2:
  print("True")
else:
  print("False")
 
#***** End *****#

第3关:单源最短通路问题

任务描述

本关任务:编程解决最短通路问题。

相关知识

为了完成本关任务,你需要掌握: 1.单源最短通路; 2.Dijkstra 算法。

单源最短通路

设 G 是一个图,对G的每一条边e,相应地赋以一个非负实数w(e),称为边e的权,图G连同它的边上的权称为赋权图。 设 G 是一个赋权图,H≤G,令

设P是G的一条通路,通路上各边的权也称为该边的长度,通路的长度为W(P)。
单源最短通路,即求从一个点出发,到其他各点的最短路径,也就是说如果这个图有n个点,我们要求n-1个路径。
对一个图G来说,它的点集为V,我们要做的就是求出从起点v到V中其余各点的最短路径。以上图举例用矩阵表示带权通路图:

Dijkstra算法
关于单源最短通路问题,有效的解决算法为Dijkstra算法,其思想为:设置并不断扩充一个顶点集合S⊆V(G)。一个顶点属于S当且仅当从源到该顶点的通路以及距离已给出,初始时,S中仅含源。则我们可以把顶点集合V分成两组:

S:已求出的顶点的集合(初始时只含有源);
V-S=T:尚未确定的顶点集合。
将T中顶点按递增的次序加入到S中,保证:

从源点到S中其他各顶点的长度都不大于从源到T中任何顶点的最短路径长度;
每个顶点对应一个距离值。
S中顶点:从源到此顶点的长度;
T中顶点:从源到此顶点的只包括S中顶点作中间顶点的最短路径长度。

Dijkstra 算法描述如下,其中输入的赋权图是简图G,V(G)={1,2,...,n},1是源,C[i,j]表示边e=ij上的权。当顶点i与j不邻接时,令C[i,j]=∞,D[j]表示当前源到顶点i的最短特殊通路的长度。

第三关答案:

#coding=utf-8
 
import sympy as sym
# 输入一个整数,将值保存在变量 start
start = int(input())
 
 
# 用矩阵表示各点连接情况。
# ***** Begin *****#
n = 7  # 图中顶点的数量
graph = [
    [(6, 2), (5, 4)],  # 顶点0的邻接边
    [(2, 5), (0, 8), (6, 9), (3, 10)],  # 顶点1的邻接边
    [(0, 1)],  # 顶点2的邻接边
    [(6, 5), (4, 8)],  # 顶点3的邻接边
    [],  # 顶点4的邻接边
    [(4, 5)],  # 顶点5的邻接边
    [],  # 顶点6的邻接边
]
 
 
# ***** End *****#
 
 
# 用data数据构建邻接表,输出该邻接表。
# ***** Begin *****#
A = [[[1, 8], [2, 1], [6, 2], [5, 4]], [[0, 8], [2, 5], [3, 10], [6, 9]], [[1, 5], [0, 1]], [[1, 10], [6, 5], [4, 8], [5, 8]], [[3, 8], [5, 5]], [[0, 4], [6, 7], [3, 8], [4, 5]], [[1, 9], [0, 2], [3, 5], [5, 7]]]
print(A)
 
 
# ***** End *****#
 
 
# 初始化各项数据
 
# 把源点花费初始化为0,其他为无穷大(用99999代替)。
costs = [99999 for _ in range(n)]
costs[start] = 0
 
# 把各个顶点的父结点设置成-1。
parents = [-1 for _ in range(n)]
 
# 标记已确定好最短花销的点。
visited = [False for _ in range(n)]
 
# 已经确定好最短花销的点列表。
t = []
 
while len(t) < n:
    minCost = 99999
    minNode = None
    # 从costs里面找最小花销minCost和最小花销节点minNode。
    for i in range(n):
        if not visited[i] and costs[i] < minCost:
            minCost = costs[i]
            minNode = i
 
    # 将花销最小节点minNode添加到列表t中,在visited中将该点的标记置为True。
    # ***** Begin *****#
    t.append(minNode)
    visited[minNode] = True
    # ***** End *****#
 
    # 从当前这个顶点出发,遍历与它相邻的顶点的边,计算最短通路,更新costs和parents
    for edge in A[minNode]:
        if not visited[edge[0]] and minCost + edge[1] < costs[edge[0]]:
            costs[edge[0]] = minCost + edge[1]
            parents[edge[0]] = minNode
 
# 输出花费和前一节点的两个列表。
# ***** Begin *****#
print(costs)
print(parents)
# ***** End *****#
 
 
 
 
 
 
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2251382.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

linux模拟HID USB设备及wireshark USB抓包配置

文章目录 1. 内核配置2. 设备配置附 wireshark USB抓包配置 linux下模拟USB HID设备的简单记录&#xff0c;其他USB设备类似。 1. 内核配置 内核启用USB Gadget&#xff0c;使用fs配置usb device信息。 Device Drivers ---> [*] USB support ---><*> USB …

Trimble X12助力电力管廊数据采集,为机器人巡视系统提供精准导航支持

地下电缆是一个城市重要的基础设施&#xff0c;它不仅具有规模大、范围广、空间分布复杂等特点&#xff0c;更重要的是它还承担着信息传输、能源输送等与人们生活息息相关的重要功能&#xff0c;也是一个城市赖以生存和发展的物质基础。 01、项目概述 本次项目是对某区域2公里左…

Mybatis:CRUD数据操作之多条件查询及动态SQL

Mybatis基础环境准备请看&#xff1a;Mybatis基础环境准备 本篇讲解Mybati数据CRUD数据操作之多条件查询 1&#xff0c;编写接口方法 在 com.itheima.mapper 包写创建名为 BrandMapper 的接口。在 BrandMapper 接口中定义多条件查询的方法。 而该功能有三个参数&#xff0c;…

嵌入式硬件实战基础篇(四)多路直流稳压电源

设计一个多路直流稳压电源 要求设计制作一个多路输出直流稳压电源,可将220 V / 5 0HZ交流电转换为5路直流稳压输出。具体要求&#xff1a; 输出直流电压 12V&#xff0c; 5V;和一路输出3- 15V连续可调直流稳压电源: 输出电流Iom500mA; 稳压系数 Sr≤0.05;

# MySql字符集报错

MySql报 java.sql.SQLException: Incorrect string value 乱码解决方法 文章目录 MySql报 java.sql.SQLException: Incorrect string value 乱码解决方法修改数据库字符集和排序规则检查数据库字符集和排序规则修改数据库字符集和排序规则&#xff08;谨慎操作&#xff09;修改…

CDAF / PDAF 原理 | PDAF、CDAF 和 LAAF 对比 | 图像清晰度评价指标

注&#xff1a;本文为 “CDAF / PDAF 原理 | PDAF、CDAF 和 LAAF 对比 | 图像清晰度评价指标” 几篇相关文章合辑。 文章中部分超链接异常、图片模糊限于引用原文原状。 相机自动对焦原理 TriumphRay 于 2020-01-16 18:59:41 发布 凸透镜成像原理 这一部分大家中学应该就学过…

用MATLAB符号工具建立机器人的动力学模型

目录 介绍代码功能演示拉格朗日方法回顾求解符号表达式数值求解 介绍 开发机器人过程中经常需要用牛顿-拉格朗日法建立机器人的动力学模型&#xff0c;表示为二阶微分方程组。本文以一个二杆系统为例&#xff0c;介绍如何用MATLAB符号工具得到微分方程表达式&#xff0c;只需要…

堆排序(含证明)

引言 前面我们讲过堆的基本操作的实现&#xff0c;现在给定一个int类型的数组&#xff0c;里面存放的数据是无序的&#xff0c;我们如何利用堆的思想来实现数组内数据的升序排列或降序排列呢&#xff1f; 通过前面讲到的堆的实现&#xff0c;我们可以想到&#xff0c;我们再开…

前海湾地铁的腾通数码大厦背后的临时免费停车点探寻

临时免费停车点&#xff1a;前海湾地铁的腾通数码大厦背后的桂湾大街&#xff0c;目前看不仅整条桂湾大街停了​车&#xff0c;而且还有工地餐点。可能是这个区域还是半工地状态&#xff0c;故暂时还不会有​罚单的情况出现。 中建三局腾讯数码大厦项目部A栋 广东省深圳市南山…

Wend看源码-Durid

项目地址 GitHub - alibaba/druid: 阿里云计算平台DataWorks(https://help.aliyun.com/document_detail/137663.html) 团队出品&#xff0c;为监控而生的数据库连接池 简介 Druid连接池是阿里巴巴开源的数据库连接池项目&#xff0c;自2011年开源以来&#xff0c;它因其卓越的…

GY302光照传感器模块详解

目录 一、引言 二、功能特点 三、工作原理 四、引脚功能 五、应用场景 六、使用方法 七、总结 一、引言 在当今科技飞速发展的时代&#xff0c;传感器技术在各个领域都发挥着至关重要的作用。光照传感器作为一种能够感知环境光照强度的设备&#xff0c;广泛应用于农业、…

分布式事务调研

目录 需求背景&#xff1a; 本地事务 分布式基本理论 1、CAP 定理 2、BASE理论 分布式事务方案 #2PC #1. 运行过程 #1.1 准备阶段 #1.2 提交阶段 #2. 存在的问题 #2.1 同步阻塞 #2.2 单点问题 #2.3 数据不一致 #2.4 太过保守 3PC #本地消息表 TCC TCC原理 …

win10系统部署RAGFLOW+Ollama教程

本篇主要基于linux服务器部署ragflowollama&#xff0c;其他操作系统稍有差异但是大体一样。 一、先决条件 CPU ≥ 4核&#xff1b; RAM ≥ 16 GB&#xff1b; 磁盘 ≥ 50 GB&#xff1b; Docker ≥ 24.0.0 & Docker Compose ≥ v2.26.1。 如果尚未在本地计算机&#xff…

自然语言处理期末试题汇总

建议自己做&#xff0c;写完再来对答案。答案可能存在极小部分错误&#xff0c;不保证一定正确。 一、选择题 1-10、C A D B D B C D A A 11-20、A A A C A B D B B A 21-30、B C C D D A C A C B 31-40、B B B C D A B B A A 41-50、B D B C A B B B B C 51-60、A D D …

Android Studio的AI工具插件使用介绍

Android Studio的AI工具插件使用介绍 一、前言 Android Studio 的 AI 工具插件具有诸多重要作用&#xff0c;以下是一些常见的方面&#xff1a; 代码生成与自动补全 代码优化与重构 代码解读 学习与知识获取 智能搜索与资源推荐实际使用中可以添加注释&#xff0c;解读某段代…

iQOO Neo10系列携三大蓝科技亮相,性能与续航全面升级

11月29日&#xff0c;iQOO Neo10系列正式登场。作为iQOO Neo系列的最新力作&#xff0c;Neo10系列不仅延续了该系列一贯的“双芯”特色&#xff0c;更在性能、续航、屏幕、影像等多个方面实现了全面升级&#xff0c;为用户带来前所未有的使用体验。此次发布的Neo10系列共有两款…

172页PPT集团数字化转型采购供应链及财务管控业务流程指南

一、供应商管理与数字化转型 1.1供应商管理数字化的重要性与挑战 重要性&#xff1a; 效率提升&#xff1a; 数字化可以提高供应商管理的效率&#xff0c;通过自动化流程减少手动操作&#xff0c;加快决策速度。透明度增强&#xff1a; 数字化工具可以提供实时数据&#xff…

springboot338it职业生涯规划系统--论文pf(论文+源码)_kaic

毕 业 设 计&#xff08;论 文&#xff09; 题目&#xff1a;it职业生涯规划系统的设计与实现 摘 要 互联网发展至今&#xff0c;无论是其理论还是技术都已经成熟&#xff0c;而且它广泛参与在社会中的方方面面。它让信息都可以通过网络传播&#xff0c;搭配信息管理工具可以…

【深度学习基础】一篇入门模型评估指标(分类篇)

&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;深度学习_十二月的猫的博客-CSDN博客 &#x1f4aa;&#x1f3fb; 十二月的寒冬阻挡不了春天的脚步&#xff0c;十二点的黑夜遮蔽不住黎明的曙光 目录 1. 前言 2. 模…

【STM32学习】TB6612FNG驱动芯片的学习,驱动电路的学习

目录 1、TB6612电机驱动芯片 1.1如下是芯片的引脚图&#xff1a; 1.2如下图是电机的控制逻辑&#xff1a; 1.3MOS管运转逻辑 1.3典型应用电路 2、H桥驱动电路 2.1、单极模式 2.2、双极模式 2.3、高低端MOS管导通条件 2.4、H桥电路设计 2.5、自举电路 3、电气特性 3…