自然语言处理期末试题汇总

news2025/1/6 19:48:55

建议自己做,写完再来对答案。答案可能存在极小部分错误,不保证一定正确。

一、选择题

1-10、C A D B D B C D A A

11-20、A A A C A B D B B A

21-30、B C C D D A C A C B

31-40、B B B C D A B B A A

41-50、B D B C A B B B B C

51-60、A D D B B C B B C A

61-70、C B A B B B D B C B

71-78、B B A D B A C B

二、判断题

1-10、F F T F F T T F F F

11-20、F T T F T F F F T T

21-27、F T F F T T F

三、填空题

1-5、搜索引擎  输出门  Word2Vec  分布式  词

6-10、pytorch  LSTM  分布式  深度学习  残差连接

11-15、GloVe  多头注意力  人名  细胞  多标签分类

16-20、join  正面  文本摘要  共现矩阵  生成

21-25、numpy.dot()  RNN  二元模型  余弦相似度  位置编码

26-30、长距离依赖  TF-IDF  自注意力机制  稀疏向量表示  SGD

31-35、BERT  多头注意力机制  Hugging Face  精确  softmax(Qi*Ki^T)*Vi

36-40、TensorFlow  一  隐状态  三元模型  门控

41-45、相似性  目标词  BART  模型库(Hub库)    多分类

46-47、精确模式  召回率  

四、简答题

1、(1)分词:句子1:“我 喜欢 学习 自然语言处理”;句子2:“自然语言处理 是 我 喜欢 的 课程”

构建词典:词典:{"我", "喜欢", "学习", "自然语言处理"} 

编码:"我" -> [1, 0, 0, 0, 0]  "学习" -> [0, 0, 1, 0]  "喜欢" -> [0, 1, 0, 0]  "自然语言处理"-> [0, 0, 0, 1]

生成特征向量:我喜欢学习自然语言处理:[1,1,1,1]

2、自注意机制的核心公式为:

自注意力机制的计算步骤为(1)初始化(2)计算相似度(3)归一化(4)加权求和

3、自然语言处理有两个核心方向:自然语言理解(NLU)和自然语言生成(NLG)。 (2分)

(1)自然语言理解

自然语言理解的目标是使计算机能够“理解”人类的语言,主要集中于解析、分析

和提取文本中的信息。NLU技术通常用于语义分析、信息提取、情感分析、命名实体识别。

(2)自然语言生成

自然语言生成的目标是使计算机能够生成具有逻辑和语法正确的自然语言文本。NLG技术通常用于文本摘要、对话系统、文本生成。

4、BERT模型在预训练过程中采用了掩码语言模型(MLM)和下一句预测(NSP)两种

策略。 

(1)掩蔽语言模型(MLM)在训练过程中,BERT随机掩蔽输入句子中的某些单词(通常是15%),然后要求模型预测这些被掩蔽的单词。此策略使模型能够从上下文中学习词的表示,而不仅仅是从左到右或从右到左的顺序。这种双向的训练方式使BERT能够更好地理解上下文。

(2)BERT还通过下一句预测(NSP)这一策略训练模型理解句子之间的关系。在训练时,模型接受成对的句子,任务是判断第二个句子是否为第一个句子的后续句子。这个任务有助于模型学习句子间的逻辑关系,提升了模型在句子级任务(如问答和自然语言推理)上的表现。

 5、该题答案不唯一,只要最终值z=w1*x1+w2*x2与θ的比较和对应真值表的值一致均正确。

6、CBOW(Continuous Bag of Words)和Skip-gram  

相同点:(1)两者都是基于神经网络的模型,通过大规模的文本数据训练,学习到词语的词向量。(2)都使用窗口大小来定义上下文,目标是捕捉词与词之间的关系和相似性。

不同点:(1)目标不同:CBOW 通过上下文预测目标词, Skip-gram 通过目标词预测上下文。(2)计算复杂度:在训练时,Skip-gram 适合于低频词,而 CBOW 适合于高频词。Skip-gram 对低频词的学习效果更好,但计算开销较大;而 CBOW 对高频词的学习效果更好。

 7、(1)遗忘门决定哪些信息将被丢弃;

(2)输入门决定哪些信息将被添加到细胞状态;

(3)输出门决定最终的隐藏状态。

8、(1)输入表示 (2)计算注意力得分(3)应用softmax函数(4)加权和(5)输出

9、TF-IDF(Term Frequency-Inverse Document Frequency)工作原理分为两部分:TF(Term Frequency):表示某个词在文档中出现的频率,这部分反映了词在特定文档中的重要性,频率越高,重要性越大。

IDF(Inverse Document Frequency):衡量某个词在整个文档集合中的重要性。IDF值越高,说明该词越少见,具有更高的区分度。

10、(1Sigmoid 激活函数优点:输出范围在 (0, 1),适合处理二分类问题。具有平滑的导数,便于梯度计算。缺点:容易导致梯度消失(vanishing gradient)问题,尤其在深层网络中。输出不是零均值,可能导致训练过程中的不稳定。

2ReLU(Rectified Linear Unit)激活函数优点:计算简单,训练速度快。有效缓解梯度消失问题,使得深层网络能够更快地收敛。缺点:在训练过程中,某些神经元可能永远不被激活(dying ReLU问题),导致信息损失。

3Tanh 激活函数优点:输出范围在 (-1, 1),有助于数据中心化,通常收敛速度比Sigmoid快。相对于Sigmoid,Tanh函数的梯度较大,缓解了梯度消失问题。缺点:仍然存在梯度消失问题,尤其在深层网络中。计算相对复杂,速度比ReLU慢。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2251359.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Android Studio的AI工具插件使用介绍

Android Studio的AI工具插件使用介绍 一、前言 Android Studio 的 AI 工具插件具有诸多重要作用,以下是一些常见的方面: 代码生成与自动补全 代码优化与重构 代码解读 学习与知识获取 智能搜索与资源推荐实际使用中可以添加注释,解读某段代…

iQOO Neo10系列携三大蓝科技亮相,性能与续航全面升级

11月29日,iQOO Neo10系列正式登场。作为iQOO Neo系列的最新力作,Neo10系列不仅延续了该系列一贯的“双芯”特色,更在性能、续航、屏幕、影像等多个方面实现了全面升级,为用户带来前所未有的使用体验。此次发布的Neo10系列共有两款…

172页PPT集团数字化转型采购供应链及财务管控业务流程指南

一、供应商管理与数字化转型 1.1供应商管理数字化的重要性与挑战 重要性: 效率提升: 数字化可以提高供应商管理的效率,通过自动化流程减少手动操作,加快决策速度。透明度增强: 数字化工具可以提供实时数据&#xff…

springboot338it职业生涯规划系统--论文pf(论文+源码)_kaic

毕 业 设 计(论 文) 题目:it职业生涯规划系统的设计与实现 摘 要 互联网发展至今,无论是其理论还是技术都已经成熟,而且它广泛参与在社会中的方方面面。它让信息都可以通过网络传播,搭配信息管理工具可以…

【深度学习基础】一篇入门模型评估指标(分类篇)

🌈 个人主页:十二月的猫-CSDN博客 🔥 系列专栏: 🏀深度学习_十二月的猫的博客-CSDN博客 💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 目录 1. 前言 2. 模…

【STM32学习】TB6612FNG驱动芯片的学习,驱动电路的学习

目录 1、TB6612电机驱动芯片 1.1如下是芯片的引脚图: 1.2如下图是电机的控制逻辑: 1.3MOS管运转逻辑 1.3典型应用电路 2、H桥驱动电路 2.1、单极模式 2.2、双极模式 2.3、高低端MOS管导通条件 2.4、H桥电路设计 2.5、自举电路 3、电气特性 3…

STM32 HAL库开发学习3.STM32启动浅析

STM32 HAL库开发学习3.STM32启动浅析 一、STM32启动模式(也称自举模式)1. MSP与PC指针赋值2. F1系列的启动模式:3. F4系列启动模式4. F7系列启动模式5. H7系列启动模式 二、STM32启动过程1. MSP 栈顶地址2. PC值3. Reset_Handler4. 启动文件内…

FCBP 认证考试要点摘要

理论知识 数据处理与分析:包括数据的收集、清洗、转换、存储等基础操作,以及数据分析方法,如描述性统计分析、相关性分析、数据挖掘算法等的理解和应用 。数据可视化:涉及图表类型的选择与应用,如柱状图、折线图、饼图…

xv6前置知识

fork函数 一个进程,包括代码、数据和分配给进程的资源。fork()函数通过系统调用创建一个与原来进程几乎完全相同的进程,也就是两个进程可以做完全相同的事,但如果初始参数或者传入的变量不同,两个进程也可以做不同的事。 一个进程调用fork()函数后,系统先给新的进程分…

ECharts柱状图-极坐标系下的堆叠柱状图,附视频讲解与代码下载

引言: 在数据可视化的世界里,ECharts凭借其丰富的图表类型和强大的配置能力,成为了众多开发者的首选。今天,我将带大家一起实现一个柱状图图表,通过该图表我们可以直观地展示和分析数据。此外,我还将提供…

监控视频汇聚平台:Liveweb视频监控管理平台方案详细介绍

Liveweb国标视频综合管理平台是一款以视频为核心的智慧物联应用平台。它基于分布式、负载均衡等流媒体技术进行开发,提供广泛兼容、安全可靠、开放共享的视频综合服务。该平台具备多种功能,包括视频直播、录像、回放、检索、云存储、告警上报、语音对讲、…

MySQL源码编译

华子目录 下载源码包上传并解压安装cmake环境检测make编译make install安装 部署复制编译文件到别的主机上 下载源码包 下载相应源码包mysql5.7编译安装需要boost库,这里官网下载含boost的源码包https://downloads.mysql.com/archives/community/ 上传并解压 [roo…

请求(request)

目录 前言 request概述 request的使用 获取前端传递的数据 实例 请求转发 特点 语法 实例 实例1 实例2 【关联实例1】 域对象 组成 作用范围: 生命周期: 使用场景: 使用步骤 存储数据对象 获得数据对象 移除域中的键值…

推荐学习笔记:矩阵补充和矩阵分解

参考: 召回 fun-rec/docs/ch02/ch2.1/ch2.1.1/mf.md at master datawhalechina/fun-rec GitHub 业务 隐语义模型与矩阵分解 协同过滤算法的特点: 协同过滤算法的特点就是完全没有利用到物品本身或者是用户自身的属性, 仅仅利用了用户与…

构造函数与析构函数错题汇总

构造函数不能定义返回类型,也没有返回类型。 堆、栈、静态存储区。栈上的对象main函数结束就释放,堆上的需要手动释放,静态存储区的在所在作用域的程序结束时释放。这里static在main函数内,是局部变量,所以作用域为…

[免费]SpringBoot+Vue景区订票(购票)系统【论文+源码+SQL脚本】

大家好,我是java1234_小锋老师,看到一个不错的SpringBootVue大景区订票(购票)系统,分享下哈。 项目视频演示 【免费】SpringBootVue景区订票(购票)系统 Java毕业设计_哔哩哔哩_bilibili 项目介绍 现代经济快节奏发展以及不断完善升级的信息…

fastdds:编译、安装并运行helloworld

fastdds安装可以参考官方文档: 3. Linux installation from sources — Fast DDS 3.1.0 documentation 从INSTALLATION MANUAL这一节可以看出来,fastdds支持的操作系统包括linux、windows、qnx、MAC OS。本文记录通过源码和cmake的方式来安装fastdds的…

HTTP 探秘之旅:从入门到未来

文章目录 导言:目录:第一篇:HTTP,互联网的“快递员”第二篇:从点开网页到看到内容,HTTP 究竟做了什么?第三篇:HTTP 的烦恼与进化史第四篇:HTTP 的铠甲——HTTPS 的故事第…

【软件项目测试文档大全】软件测试方案,验收测试计划,验收测试报告,测试用例,集成测试,测试规程和指南,等保测试(Word原件)

1. 引言 1.1. 编写目的 1.2. 项目背景 1.3. 读者对象 1.4. 参考资料 1.5. 术语与缩略语 2. 测试策略 2.1. 测试完成标准 2.2. 测试类型 2.2.1. 功能测试 2.2.2. 性能测试 2.2.3. 安全性与访问控制测试 2.3. 测试工具 3. 测试技术 4. 测试资源 4.1. 人员安排 4.…

前端拿不到 response 响应流返回的 header 例如 Content-Disposition 等

同步发布于我的网站 🚀 背景介绍默认可访问的响应头问题分析解决方案 示例 前端代码示例注意事项总结 背景介绍 在进行前后端交互时,前端有时需要读取服务器返回的特定响应头(如 Content-Disposition),以便根据这些…