open-instruct - 训练开放式指令跟随语言模型

news2025/1/16 1:05:24

在这里插入图片描述

文章目录

    • 关于 open-instruct
    • 设置
    • 训练
      • 微调
      • 偏好调整
      • RLVR
    • 污染检查
      • 开发中
      • 仓库结构
    • 致谢


关于 open-instruct

  • github : https://github.com/allenai/open-instruct

这个仓库是我们对在公共数据集上对流行的预训练语言模型进行指令微调的开放努力。我们发布这个仓库,并将持续更新它,包括:

  1. 使用最新技术和指令数据集统一格式微调语言模型的代码。
  2. 在一系列基准上运行标准评估的代码,旨在针对这些语言模型的多种能力。
  3. 我们在探索中构建的检查点或其他有用的工件。

请参阅我们的第一篇论文
How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources
关于这个项目背后的更多想法以及我们的初步发现,请参阅我们的第二篇论文。
Camels in a Changing Climate: Enhancing LM Adaptation with Tulu 2
关于使用Llama-2模型和直接偏好优化的结果。我们仍在开发更多模型。有关涉及PPO和DPO的更近期的结果,请参阅我们的第三篇论文
Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback


设置

我们的设置大部分遵循我们的
Dockerfile
, 使用 Python 3.10。注意,Open Instruct 是一个研究代码库,不保证向后兼容性。 我们提供两种安装策略:

  • 本地安装:这是推荐安装 Open Instruct 的方式。您可以通过运行以下命令安装依赖项:
pip install --upgrade pip "setuptools<70.0.0" wheel 
# TODO, unpin setuptools when this issue in flash attention is resolved
pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu121
pip install packaging
pip install flash-attn==2.6.3 --no-build-isolation
pip install -r requirements.txt
python -m nltk.downloader punkt
pip install -e .

  • Docker 安装: 您也可以使用 Dockerfile 来构建 Docker 镜像。您可以使用以下命令来构建镜像:
docker build --build-arg CUDA=12.1.0 --build-arg TARGET=cudnn8-devel --build-arg DIST=ubuntu20.04 . -t open_instruct_dev
# if you are interally at AI2, you can create an image like this:
beaker image delete $(whoami)/open_instruct_dev 
beaker image create open_instruct_dev -n open_instruct_dev -w ai2/$(whoami)

如果您在 AI2 内部,您可以使用我们始终最新的自动构建镜像来启动实验:nathanl/open_instruct_auto


训练

设置好环境后,您就可以开始一些实验了。我们在下面提供了一些示例。要了解有关如何重现Tulu 3模型的更多信息,请参阅Tulu 3自述文件。Tulu 1和Tulu 2的说明和文档在Tulu 1和2自述文件中。


微调

您可以使用以下命令开始:

# quick debugging run using 1 GPU
sh scripts/finetune_with_accelerate_config.sh 1 configs/train_configs/sft/mini.yaml
# train an 8B tulu3 model using 8 GPU
sh scripts/finetune_with_accelerate_config.sh 8 configs/train_configs/tulu3/tulu3_sft.yaml

偏好调整

# quick debugging run using 1 GPU
sh scripts/dpo_train_with_accelerate_config.sh 1 configs/train_configs/dpo/mini.yaml
# train an 8B tulu3 model using 8 GPU
sh scripts/finetune_with_accelerate_config.sh 8 configs/train_configs/tulu3/tulu3_dpo_8b.yaml

RLVR

# quick debugging run using 2 GPU (1 for inference, 1 for training)
# here we are using `HuggingFaceTB/SmolLM2-360M-Instruct`; it's prob not
# gonna work, but it's easy to test run and print stuff.
python open_instruct/ppo_vllm_thread_ray_gtrl.py \
    --dataset_mixer '{"ai2-adapt-dev/gsm8k_math_ifeval_ground_truth_mixed": 1.0}' \
    --dataset_train_splits train \
    --dataset_eval_mixer '{"ai2-adapt-dev/gsm8k_math_ground_truth": 1.0}' \
    --dataset_eval_splits test \
    --max_token_length 2048 \
    --max_prompt_token_length 2048 \
    --response_length 2048 \
    --model_name_or_path HuggingFaceTB/SmolLM2-360M-Instruct \
    --reward_model_path HuggingFaceTB/SmolLM2-360M-Instruct \
    --non_stop_penalty \
    --stop_token eos \
    --temperature 1.0 \
    --ground_truths_key ground_truth \
    --chat_template tulu \
    --sft_messages_key messages \
    --learning_rate 3e-7 \
    --total_episodes 10000 \
    --penalty_reward_value -10.0 \
    --deepspeed_stage 3 \
    --per_device_train_batch_size 2 \
    --local_rollout_forward_batch_size 2 \
    --local_mini_batch_size 32 \
    --local_rollout_batch_size 32 \
    --num_epochs 1 \
    --actor_num_gpus_per_node 1 \
    --vllm_tensor_parallel_size 1 \
    --beta 0.05 \
    --apply_verifiable_reward true \
    --output_dir output/rlvr_1b \
    --seed 3 \
    --num_evals 3 \
    --save_freq 100 \
    --reward_model_multiplier 0.0 \
    --gradient_checkpointing \
    --with_tracking

# train an 8B tulu3 model using 8 GPU (1 for inference, 7 for training)
python open_instruct/ppo_vllm_thread_ray_gtrl.py \
    --dataset_mixer '{"ai2-adapt-dev/gsm8k_math_ifeval_ground_truth_mixed": 1.0}' \
    --dataset_train_splits train \
    --dataset_eval_mixer '{"ai2-adapt-dev/gsm8k_math_ground_truth": 1.0}' \
    --dataset_eval_splits test \
    --max_token_length 2048 \
    --max_prompt_token_length 2048 \
    --response_length 2048 \
    --model_name_or_path allenai/Llama-3.1-Tulu-3-8B-DPO \
    --reward_model_path allenai/Llama-3.1-Tulu-3-8B-RM \
    --non_stop_penalty \
    --stop_token eos \
    --temperature 1.0 \
    --ground_truths_key ground_truth \
    --chat_template tulu \
    --sft_messages_key messages \
    --learning_rate 3e-7 \
    --total_episodes 10000000 \
    --penalty_reward_value -10.0 \
    --deepspeed_stage 3 \
    --per_device_train_batch_size 2 \
    --local_rollout_forward_batch_size 2 \
    --local_mini_batch_size 32 \
    --local_rollout_batch_size 32 \
    --actor_num_gpus_per_node 7 \
    --vllm_tensor_parallel_size 1 \
    --beta 0.05 \
    --apply_verifiable_reward true \
    --output_dir output/rlvr_8b \
    --seed 3 \
    --num_evals 3 \
    --save_freq 100 \
    --reward_model_multiplier 0.0 \
    --gradient_checkpointing \
    --with_tracking

污染检查

我们发布了用于测量指令调整数据集和评估数据集之间重叠的脚本./decontamination。有关更多详细信息,请参阅自述文件。


开发中

当向此仓库提交PR时,我们使用以下方式检查open_instruct/中的核心代码样式:

make style
make quality

仓库结构

├── assets/                     <- Images, licenses, etc.
├── configs/                    
| ├── beaker_configs/       <- AI2 Beaker configs
| ├── ds_configs/           <- DeepSpeed configs
| └── train_configs/        <- Training configs
├── decontamination/            <- Scripts for measuring train-eval overlap
├── eval/                       <- Evaluation suite for fine-tuned models
├── human_eval/                 <- Human evaluation interface (not maintained)
├── open_instruct/              <- Source code (flat)
├── quantize/                   <- Scripts for quantization
├── scripts/                    <- Core training and evaluation scripts
└── Dockerfile                  <- Dockerfile

致谢

Open Instruct 是一个受益于许多开源项目和库的项目。我们特别感谢以下项目:

  • HuggingFace Transformers : 我们为微调脚本适配了 Hugging Face 的 Trainer。
  • HuggingFace TRL 和 eric-mitchell/direct-preference-optimization : 我们的偏好调整代码改编自 TRL 和 Eric Mitchell 的 DPO 代码。
  • OpenAI 的 lm-human-preferences, summarize-from-feedback, 和vwxyzjn/summarize_from_feedback_details : 我们的核心PPO代码是从OpenAI的原始RLHF代码改编而来。
    Huang et al (2024)'s reproduction work 关于OpenAI的基于反馈的总结工作的内容。
  • OpenRLHF : 我们将 OpenRLHF 的 Ray + vLLM 分布式代码进行了适配,以扩展 PPO RLVR 训练至 70B 规模。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2250729.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

git使用(三)

git使用&#xff08;三&#xff09; git各阶段回退操作命令git checkout --git reset HEADgit reset --hardgit refloggit push -fgit diff HEAD -- git推送代码冲突解决方案两个人对不同代码段做修改两个人对相同代码段做修改 git各阶段回退操作命令 git checkout – 当在工作…

深度学习基础1

目录 1. 深度学习的定义 2.神经网络 2.1. 感知神经网络 2.2 人工神经元 2.2.1 构建人工神经元 2.2.2 组成部分 2.2.3 数学表示 2.2.4 对比生物神经元 2.3 深入神经网络 2.3.1 基本结构 2.3.2 网络构建 2.3.3 全连接神经网络 3.神经网络的参数初始化 3.1 固定值初…

设计模式-适配器模式-注册器模式

设计模式-适配器模式-注册器模式 适配器模式 如果开发一个搜索中台&#xff0c;需要适配或接入不同的数据源&#xff0c;可能提供的方法参数和平台调用的方法参数不一致&#xff0c;可以使用适配器模式 适配器模式通过封装对象将复杂的转换过程隐藏于幕后。 被封装的对象甚至…

2025年人工智能,自动化与机械工程国际学术会议(AIAME2025)

早鸟通道开启&#xff1a; 2025年人工智能&#xff0c;自动化与机械工程国际学术会议&#xff08;AIAME2025&#xff09; 2025 International Conference on Artificial Intelligence, Automation, and Mechanical Engineering 【重要日期】 早鸟征稿截止日期&#xff1a;…

IntelliJ IDEA配置(mac版本)

用惯了eclipse开发java的小伙伴们&#xff0c;初次接触IntelliJ IDEA可能会和我一样&#xff0c;多少有些不适感&#xff0c;在使用过程中总想着eclipse得对应功能。 接下来&#xff0c;我就总结下我日常开发中遇到的常用配置&#xff08;不包括快捷键&#xff0c;我认为每个人…

GateWay使用手册

好的&#xff0c;下面是优化后的版本。为了提高可读性和规范性&#xff0c;我对内容进行了结构化、简化了部分代码&#xff0c;同时增加了注释说明&#xff0c;便于理解。 1. 引入依赖 在 pom.xml 中添加以下依赖&#xff1a; <dependencies><!-- Spring Cloud Gate…

在内网工作时,如何使用 vscode remote ssh 去连接内网服务器?

来源&#xff1a;https://stackoverflow.com/questions/56671520/how-can-i-install-vscode-server-in-linux-offline 看这个回答&#xff1a; 一般来说&#xff0c;内网会提供 vscode 安装包&#xff0c;remote-ssh 的 vsix&#xff0c;先安装好。 随后&#xff0c;保证自己…

学习日记_20241126_聚类方法(自组织映射Self-Organizing Maps, SOM)

前言 提醒&#xff1a; 文章内容为方便作者自己后日复习与查阅而进行的书写与发布&#xff0c;其中引用内容都会使用链接表明出处&#xff08;如有侵权问题&#xff0c;请及时联系&#xff09;。 其中内容多为一次书写&#xff0c;缺少检查与订正&#xff0c;如有问题或其他拓展…

吉客云数据集成技巧:智能实现MySQL物料信息查询

吉客云数据集成技巧&#xff1a;智能实现MySQL物料信息查询 吉客云数据集成到MySQL&#xff1a;物料信息查询案例分享 在企业的数据管理和分析过程中&#xff0c;数据的高效集成与处理至关重要。本文将聚焦于一个具体的系统对接集成案例——吉客云物料信息查询到BI拉伯塔的物料…

Flink cdc同步增量数据timestamp字段相差八小时(分析|解决)不是粘贴复制的!

问题 我使用flink cdc同步mysql到mysql遇到了timestamp字段缺少八小时的问题。很少无语&#xff0c;flink ,cdc,debezium时区都设置了&#xff0c;没有任何效果&#xff01; 分析 问题出现在mysql binlog身上&#xff01;&#xff01;&#xff01; 因为默认mysql会使用UTC来…

QUICK 调试camera-xml解析

本文主要介绍如何在QUICK QCS6490使能相机模组。QCS6490的相机基于CameraX的框架&#xff0c;只需通过配置XML文件&#xff0c;设置相机模组的相关参数&#xff0c;就可以点亮相机。本文主要介绍Camera Sensor Module XML和Camera Sensor XML配置的解析&#xff0c;这中间需要c…

ArcGIS 软件中路网数据的制作

内容导读 路网数据是进行网络分析的基础&#xff0c;它是建立网络数据集的数据来源。 本文我们以OSM路网数据为例&#xff0c;详细介绍OSM路网数据从下载&#xff0c;到数据处理&#xff0c;添加属性&#xff0c;完成符合网络分析的网络数据集的全部过程。 01 数据获取 比较…

Flink双流Join

在离线 Hive 中&#xff0c;我们经常会使用 Join 进行多表关联。那么在实时中我们应该如何实现两条流的 Join 呢&#xff1f;Flink DataStream API 为我们提供了3个算子来实现双流 join&#xff0c;分别是&#xff1a; join coGroup intervalJoin 下面我们分别详细看一下这…

【Python-Open3D学习笔记】005Mesh相关方法

TriangleMesh相关方法 文章目录 TriangleMesh相关方法1. 查看mesh三角形面信息2. 可视化三角形3. 上采样4. 计算mesh形成的面积和体积 1. 查看mesh三角形面信息 def view_hull_triangles(hull: o3d.geometry.TriangleMesh):"""查看mesh三角形面信息&#xff08…

【LeetCode热题100】优先级队列

这盘博客记录了关于优先级队列的几道题&#xff0c;包括最后一块石头的重量、数据流中的第K大元素、前K个高频单词、数据流的中位数。 class Solution { public:int lastStoneWeight(vector<int>& stones) {priority_queue<int> heap;for(auto s : stones) hea…

node.js基础学习-cheerio模块-简单小爬虫(五)

学习cheerio模块&#xff0c;简单做一个爬取图片网站的图片&#xff0c;并且将这些图片下载到本地指定的文件夹下&#xff0c;很多图片网站都有一些反爬取的机制&#xff0c;找的好几个都会报302错误&#xff0c;所以我找了一个小的图片网站&#xff0c;这个没有反爬取机制&…

技术创新与人才培养并重 软通动力子公司鸿湖万联亮相OpenHarmony人才生态大会

11月27日&#xff0c;由开放原子开源基金会指导&#xff0c;OpenHarmony项目群工作委员会主办的OpenHarmony人才生态大会2024在武汉隆重举办。软通动力子公司鸿湖万联作为OpenHarmony项目群A类捐赠人应邀出席。大会期间&#xff0c;鸿湖万联不仅深度参与了OpenHarmony人才生态年…

FFmpeg 推流给 FreeSWITCH

FFmpeg 推流&#xff0c;貌似不难&#xff0c;网上有很多资料, 接到一个任务&#xff0c;推流给 FreeSWITCH&#xff0c;最开始以为很容易&#xff0c; 实则不然&#xff0c;FreeSWITCH uuid_debug_media <uuid>&#xff0c; 一直没人任何反应 仔细一查&#xff0c;Fr…

彻底理解quadtree四叉树、Octree八叉树 —— 点云的空间划分的标准做法

1.参考文章&#xff1a; &#xff08;1&#xff09;https://www.zhihu.com/question/25111128 这里面的第一个回答&#xff0c;有一幅图&#xff1a; 只要理解的四叉树的构建&#xff0c;对于八叉树的构建原理类比方法完全一样&#xff1a;对于二维平面内的随机分布的这些点&…

【工具变量】上市公司企业数字化转型指数(甄红线版本,战略引领、技术驱动、环境支撑、数字化成果及应用)2011-2022年

一、测算方式&#xff1a;参考《经济研究》甄红线&#xff08;2023&#xff09;老师研究的做法&#xff0c;本文采用 &#xff23;&#xff33;&#xff2d;&#xff21;&#xff32; 数据库中国上市公司数字化转型研究数据库中企业数字化转型指数来衡量企业数字化转型水平。 数…