中国科学院大学研究生学术英语读写教程 Unit7 Materials Science TextA 原文和翻译

news2025/1/8 4:44:43

中国科学院大学研究生学术英语读写教程

Unit7 Materials Science TextA 原文和翻译

在这里插入图片描述
Why Is the Story of Materials Really the Story of Civilisation?
为什么材料的故事实际上就是文明的故事?
Mark Miodownik

1
Everything is made of something. Take away concrete, glass, textiles, metal, and the other materials from our lives and we are left naked, shivering in a muddy field. The sophistication of our lives is in a large part bestowed by material wealth, we would quickly revert to animal behaviour without the stuff of our civilisation: What makes us human is our clothes, our homes, our cities, our things, which we animate through our customs and language. This becomes very apparent if you ever visit a disaster zone. Thus the material world is not just a display of our technology and culture, it is part of us, we invented it, we made it and it makes us who we are.

一切都是由某种物质构成的。如果生活中没有了混凝土、玻璃、纺织品、金属和其他材料,我们就会赤身裸体,在泥泞的土地上瑟瑟发抖。我们生活的精致很大程度上是由物质财富赋予的,如果没有文明的物质,我们很快就会恢复到动物行为:让我们成为人类的是我们的衣着、我们的家园、我们的城市、我们的物品,我们通过我们的习俗和语言赋予它们生命。如果你去过灾区,这一点就会非常明显。因此,物质世界不仅仅是我们技术和文化的展示,它是我们的一部分,我们发明了它,我们制造了它,它成就了我们。

2
The fundamental importance of materials is made clear from the naming of ages of civilisations the stone, iron and bronze ages with each new era being brought about by a new material. Iron and steel were the defining materials of the Victorian era, allowing engineers to give full rein to their dreams of creating suspension bridges, railways, steam engines and passenger liners. Isambard Kingdom Brunel used them as a manifesto to transform the landscape and sow the seeds of modernism. The 20th century is often hailed as the age of silicon, after the breakthrough in materials science that ushered in the silicon chip and the information revolution. Yet a kaleidoscope of other new materials also revolutionised modern living. Architects took mass-produced sheet glass and combined it with structural steel to produce skyscrapers that invented a new type of city life. Plastics transformed our homes and dress. Polymers were used to produce celluloid and ushered in a new visual culture, the cinema. The development of aluminium alloys and nickel superalloys enabled us to fly cheaply and accelerated the collision of cultures. Medical and dental ceramics allowed us to rebuild ourselves and redefine disability and ageing - and as the term “plastic surgery” implies, materials are often the key to new treatments used to repair our faculties (hip replacements) or enhance our features (silicone implants for breast enlargement).

材料的重要性从文明时代的命名中可见一斑:石器时代、铁器时代和青铜时代,每个新时代都由一种新材料开创。钢铁是维多利亚时代的标志性材料,工程师们得以充分实现建造悬索桥、铁路、蒸汽机和客轮的梦想。伊桑巴德·金德姆·布鲁内尔以钢铁作为宣言,改变了景观,播下了现代主义的种子。20 世纪通常被誉为硅时代,因为材料科学的突破带来了硅芯片和信息革命。然而,其他新材料的万花筒也彻底改变了现代生活。建筑师将大批量生产的平板玻璃与结构钢结合起来,建造出摩天大楼,开创了一种新型的城市生活。塑料改变了我们的家居和服饰。聚合物被用来生产赛璐珞,开创了一种新的视觉文化——电影。铝合金和镍超合金的发展让我们能够廉价地飞行,并加速了文化的碰撞。医疗和牙科陶瓷使我们能够重建自我并重新定义残疾和衰老——正如“整形外科”一词所暗示的那样,材料通常是用于修复我们的能力(髋关节置换术)或增强我们的特征(用于隆胸的硅胶植入物)的新疗法的关键。

3
My obsession with materials started as a teenager. I was puzzled by their obscurity, despite being all around us. How many people can spot the difference between aluminium and steel? Woods are clearly different from one another, but how many people can say why? Plastics are confusing; who knows the difference between polythcnc and polypropylcnc? Eventually I cnrolled in a degree at Oxford University’s material science department, went on to do a PhD in jet engine alloys and am now professor of materials and society and director of the Institute of Making at University College London. On my journey I have found a hidden world of makers who create the stuff on which we all rely, from aircraft manufacturers to clothing makers. Materials are at the heart of every company I visit and it is hard not to conclude that although Google and Twitter may dominate technology headlines, and cosmologists may be most popular with the media, materials transformation is still what makes the world go around.

我对材料的痴迷始于青少年时期。尽管材料无处不在,但我却对它们的晦涩难懂感到困惑。有多少人能发现铝和钢之间的区别?木材之间显然存在差异,但有多少人能说出其中的原因?塑料令人困惑;谁知道聚乙烯和聚丙烯之间的区别?最后,我考上了牛津大学材料科学系,继续攻读喷气发动机合金博士学位,现在是伦敦大学学院材料与社会教授和制造研究所所长。在我的旅程中,我发现了一个隐藏的制造者世界,他们创造了我们所有人依赖的东西,从飞机制造商到服装制造商。材料是我访问的每家公司的核心,很难不得出这样的结论:尽管谷歌和推特可能占据科技头条,宇宙学家可能最受媒体欢迎,但材料转化仍然是推动世界运转的因素。

4
Starting next week in a new series of columns for Observer Tech Monthly I am going to tell the story of stuff. Each month I will pick a different material and uncover the human needs and desires that brought it into being, and decode the materials science and engineering behind it. Along the way, we will find that the real differences between materials are deep below the surface, a world that is shut off from most unless they have access to sophisticated scientific equipment. So to understand materiality is necessarily a journey into the inner space of materials. Pretty much the whole of materials science is concerned with the microscopic worlds. Doing so explains why some materials smell and others are odourless; why some can last for 1,000 years and others crumble in the sun; how some glass can be bulletproof, while a wine glass shatters at the slightest impact. The journey into this microscopic world reveals the science behind our food, our clothes, our gadgets, our jewellery, and of course our bodies.

从下周开始,我将在《观察家科技月刊》的新系列专栏中讲述物质的故事。每个月,我都会选择一种不同的材料,揭示人类产生这种材料的需求和欲望,并解读其背后的材料科学和工程。在此过程中,我们会发现材料之间的真正差异深藏在表面之下,除非人们能够使用先进的科学设备,否则大多数人都无法接触到这个世界。因此,要了解物质性,就必须深入材料的内部空间。几乎所有的材料科学都与微观世界有关。这样做可以解释为什么有些材料有气味,而另一些材料则无味;为什么有些材料可以保存 1000 年,而另一些材料在阳光下会碎裂;为什么有些玻璃可以防弹,而酒杯在轻微的撞击下就会破碎。进入这个微观世界的旅程揭示了我们的食物、衣服、小玩意、珠宝,当然还有我们的身体背后的科学。

5
Take for example, a piece of thread, which exists at the same scale as hair. It is a synthetic structure at the limit of our eyesight that has allowed us to make ropes, blankets, carpets, but most importantly, clothes. Textiles are one of the earliest synthetic materials; when we wear a pair of jeans we are wearing a miniature woven structure, the design of which is older than Stonehenge. Clothes have kept us warm and protected for all of recorded history, as well as keeping us fashionable. But they are hi-tech too. In the 20th century we learnt how to make space suits from textiles strong enough to protect astronauts on the moon as well as solid textiles for artificial limbs called carbon fibre composites.

以一根线为例,它与头发一样大小。它是我们视力所能及的极限范围内的合成结构,我们用它来制作绳索、毛毯、地毯,但最重要的是衣服。纺织品是最早的合成材料之一;当我们穿牛仔裤时,我们穿的是一种微型编织结构,其设计比巨石阵还要古老。自有记载以来,衣服一直为我们保暖、提供保护,也让我们保持时尚。但它们也属于高科技。在 20 世纪,我们学会了如何用强度足以保护月球上宇航员的纺织品制作太空服,以及用名为碳纤维复合材料的坚固纺织品制作假肢。

6
But there is more to materials than the science. Those who make things all have a different understanding of the practical, emotional and sensual aspect of their materials. For instance, we know the sounds of the doors in our houses, and can distinguish between someone leaving or entering from the subtle differences in keys rattling and hinges creaking. As a child I could always tell whether it was my mother or my father coming up the stairs, from the subtle differences in the sound of the creaky stairs. These acoustic personalities of buildings are often overlooked during the design process. Carpet makes a room feel warmer but also changes the acoustic signature of the room. The clickity-clack of high heels and the party they announce are muted; the squeak of rubber tennis soles and the sport they anticipate is banished; the comforting solid thump of sensible shoes on their way to work is no longer proclaimed. Installing carpet is a kind of auditory gag, which may of course be used intentionally for that purpose such as when designers want to create a sense of intimacy and calm. It is this diversity of material knowledge that I intend to capture in these columns.

但材料不仅仅是一门科学。制造物品的人对材料的实际、情感和感官方面都有不同的理解。例如,我们知道家里门的声音,可以通过钥匙的咔嗒声和铰链的吱吱声的细微差别来区分有人离开或进入。小时候,我总是能从吱吱作响的楼梯声音的细微差别中分辨出上楼梯的人是我妈妈还是我爸爸。这些建筑的声学特性在设计过程中经常被忽视。地毯让房间感觉更温暖,但也会改变房间的声学特征。高跟鞋的咔嗒声和它们预示的派对被减弱了;橡胶网球鞋的吱吱声和它们预示的运动被消除了;上班时舒适的鞋子发出的沉稳的砰砰声也不再被宣扬。铺地毯是一种听觉上的噱头,当然,设计师可能会故意用它来达到这个目的,比如当设计师想要创造一种亲密和平静的感觉时。我打算在这些专栏中捕捉这种材料知识的多样性。

7
Because materials are built from atoms, we cannot avoid talking about the rules that govern them, which are described by quantum mechanics. This means that as we enter the atomic world, we must abandon common sense, and talk instead of wave functions and electron states. More materials are being designed from scratch at this scale, and can perform seemingly impossible tasks. Silicon chips designed using quantum mechanics have already brought about the information age. Silicon is now changing the way we light our homes (light emitting diodes) and harvest energy from the sun (solar cells).

由于材料是由原子构成的,我们无法避免谈论控制原子的规则,这些规则由量子力学描述。这意味着,当我们进入原子世界时,我们必须抛弃常识,转而谈论波函数和电子状态。越来越多的材料正在以这种规模从头开始设计,并且可以完成看似不可能的任务。使用量子力学设计的硅芯片已经带来了信息时代。硅现在正在改变我们照亮家庭的方式(发光二极管)和从太阳中获取能量的方式(太阳能电池)。

8
The central idea behind materials science is that changes at invisibly small scales manifest themselves as changes in a material’s behaviour at the human scale. It is this process that our ancestors stumbled upon to make bronze and steel, even though they did not have the microscopes to see what they were doing - an amazing achievement. When you hit a piece of metal you are not just changing its shape, you are changing the inner structure of the metal, which is why metals get harder when you hit them. Our ancestors knew this from experience but didn’t know why. Nevertheless this gradual accumulation of knowledge got us to the 20th century before any real appreciation of the structure of materials was understood. In these columns I will be championing this skill of making. This is not just because it is the hallmark of human civilisation but because the deindustrialisation of the developed world has devalued making.

材料科学的核心思想是,在肉眼看不见的微小尺度上的变化会以人类尺度上材料行为的变化的形式表现出来。我们的祖先偶然发现了这一过程,并用它来制造青铜和钢铁,尽管他们当时没有显微镜来观察他们在做什么——这是一项了不起的成就。当你敲击一块金属时,你不仅会改变它的形状,还会改变金属的内部结构,这就是为什么敲击金属会使其变硬的原因。我们的祖先从经验中知道这一点,但不知道为什么。然而,这种知识的逐渐积累使我们在 20 世纪才真正理解了材料的结构。在这些专栏中,我将倡导这种制造技能。这不仅是因为它是人类文明的标志,还因为发达国家的去工业化贬值了制造的价值。

9
Making is not just an economic activity, it is the equal of literature, performance or mathematics as a form of human expression. By eschewing material knowledge we cease to understand the world around us. We wring our hands about climate change or urban sprawl without any recognition that our ignorance of materiality might be the cause. We feel proud of the technological marvel that is a smartphone, and yet we upgrade ditch one for a newer model - at the first opportunity. We may assuage our conscience by hoping that they are recycled with some technology equal in sophistication to their fabrication techniques but they are not; most are disposed of in industrial blenders.

制造不仅仅是一种经济活动,它与文学、表演或数学一样,都是人类表达的一种形式。通过回避物质知识,我们不再理解我们周围的世界。我们对气候变化或城市扩张感到忧心忡忡,却没有意识到我们对物质的无知可能是原因。我们为智能手机这一技术奇迹感到自豪,但一有机会,我们就会把一部智能手机换成新款。我们可能会希望这些智能手机能用某种与其制造技术相当的先进技术进行回收,以减轻我们的良心不安,但事实并非如此;大多数智能手机都被扔进了工业搅拌机。

10
The ages of civilisation are named after materials precisely because they transformed and shaped society. By distancing ourselves from the act of making, by buying and consuming stuff but never having any experience of their manufacture, the developed world finds itself not to be the illiterate society that education ministers fear, but an unmakerly society. In my view this practical ignorance is every bit as dangerous to a modern democracy as a lack of literacy. By swopping a material and industrial understanding of the world for one based on facts and information, we find ourselves uncivilised in a different way.

文明时代以材料命名,正是因为它们改变并塑造了社会。通过远离制造行为,通过购买和消费物品,但从未体验过它们的制造,发达国家发现自己不是教育部长们担心的文盲社会,而是一个没有制造的社会。在我看来,这种实践上的无知对现代民主的危害丝毫不亚于缺乏识字。通过用事实和信息取代对世界的物质和工业理解,我们发现自己以另一种方式变得不文明。

11
This series of columns won’t be an exhaustive survey of materials, nor a catalogue of the most important ones. But I will aim to capture the fabric of our lives through materiality. After all, everything is made of something.

本系列专栏不会对材料进行详尽的调查,也不会列出最重要的材料。但我的目标是通过物质性来捕捉我们生活的构造。毕竟,一切都是由某种东西构成的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2250535.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

下载安装Android Studio

(一)Android Studio下载地址 https://developer.android.google.cn/studio 滑动到 点击下载文档 打开新网页 切换到english ![](https://i-blog.csdnimg.cn/direct/b7052b434f9d4418b9d56c66cdd59fae.png 等待一会,出现 点同意后&#xff0…

【解决方案】pycharm出现 为项目选择的Python解释器无效

文章目录 1.问题重述2.解决方案END 1.问题重述 第二次启动项目的时候出现 2.解决方案 右下角点 先选无解释器,然后在用项目配置好的解释器,然后就好了,估计是第二次启动的时候没有识别到,UI的信号设置的问题 END

浏览器的数据六种存储方法比较 :LocalStorage vs. IndexedDB vs. Cookies vs. OPFS vs. WASM-SQLite

在构建该 Web 应用程序,并且希望将数据存储在用户浏览器中。也许您只需要存储一些小标志,或者甚至需要一个成熟的数据库。 我们构建的 Web 应用程序类型发生了显着变化。在网络发展的早期,我们提供静态 html 文件。然后我们提供动态渲染的 h…

linux一键部署apache脚本

分享一下自己制作的一键部署apache脚本: 脚本已和当前文章绑定,请移步下载(免费!免费!免费!) (单纯的分享!) 步骤: 将文件/内容上传到终端中 …

Java ConcurrentHashMap

Java Map本质不是线程安全的,HashTable和Collections同步包装器(Synchronized Wrapper)在并发场景下性能低。Java还为实现 Map 的线程安全提供了并发包,保证线程安全的方式从synchronize简单方式到精细化,比如Concurre…

redis下载、基础数据类型、操作讲解说明,持久化、springboot整合等

1 Redis是什么 官网:https://redis.io 开发者:Antirez Redis诞生于2009年全称是Remote Dictionary Server 远程词典服务器,是一个基于内存的键值型NoSQL数据库。 Redis是一个开源的、高性能的键值对存储系统,它支持多种数据结构&…

C# 解决【托管调试助手 “ContextSwitchDeadlock“:……】问题

文章目录 一、遇到问题二、解决办法 一、遇到问题 托管调试助手 “ContextSwitchDeadlock”:“CLR 无法从 COM 上下文 0x56e81e70 转换为 COM 上下文 0x56e81d48,这种状态已持续 60 秒。拥有目标上下文/单元的线程很有可能执行的是非泵式等待或者在不发送 Windows …

系统学习算法: 专题二 滑动窗口

题目一: 算法原理: 依然第一反应是暴力枚举,将所有的子数组都枚举出来,找到满足条件的长度最小的子数组,但是需要两层循环,时间复杂度来到O(N^2) 接下来就该思考如何进行优化 如果…

QGIS制作xyz切片(mbtiles)

MBTiles是由MapBox制定的一种将瓦片地图数据存储到SQLite数据库中并可快速使用,管理和分享的规范。它使得数以百万的瓦片数据存储在一个文件中,而且SQLite数据库支持多种平台,所以使用MBTiles在移动设备上浏览瓦片数据是比较理想的方式。 QGI…

软件测试——性能测试工具JMeter

1.JMeter介绍 Apache JMeter是一款纯java编写负载功能测试和性能测试开源工具软件。JMeter小巧轻便且免费,逐渐成为了主流的性能测试工具,是每个测试人员都必须要掌握的工具之一。 环境要求: ​ 需要Java8或者更高的版本。 1.1 JMeter的下…

【C++算法】20.二分查找算法_x 的平方根

文章目录 题目链接:题目描述:解法C 算法代码:图解 题目链接: 69. x 的平方根 题目描述: 解法 暴力解法: 如果x17 从1,2,3,4,5......这些数里面找他们的平方…

拥抱 OpenTelemetry:阿里云 Java Agent 演进实践

作者:陈承 背景 在 2018 年的 2 月,ARMS Java Agent 的第一个版本正式发布,为用户提供无侵入的的可观测数据采集服务。6 年后的今天,随着软件技术的迅猛发展、业务场景的逐渐丰富、用户规模的快速增长,我们逐渐发现过…

【项目日记】仿mudou的高并发服务器 --- 实现HTTP服务器

对于生命,你不妨大胆一点, 因为我们始终要失去它。 --- 尼采 --- ✨✨✨项目地址在这里 ✨✨✨ ✨✨✨https://gitee.com/penggli_2_0/TcpServer✨✨✨ 仿mudou的高并发服务器 1 前言2 Util工具类3 HTTP协议3.1 HTTP请求3.2 HTTP应答 4 上下文解析模块…

从0在自己机器上部署AlphaFold 3

本文介绍如何在自己本地机器上安装AlphaFold 3。 在10月份,Google DeepMind的首席执行官Demis Hassabis和高级研究科学家John M. Jumper所领导的团队,利用AI技术成功预测了几乎所有已知蛋白质的结构,开发出备受赞誉的AlphaFold,并…

faiss库中ivf-sq(ScalarQuantizer,标量量化)代码解读-6

调试 经过gdb调试获取的调用栈内容如下&#xff0c;链接&#xff1a; 步骤函数名称文件位置说明1faiss::IndexFlatCodes::add/faiss/IndexFlatCodes.cpp:24在 add 方法中&#xff0c;检查是否已经训练完成&#xff0c;准备添加向量到索引中。2std::vector<unsigned char&g…

SQL进阶——子查询与视图

在SQL中&#xff0c;子查询和视图是两种强大的技术&#xff0c;用于处理复杂的查询、提高代码的重用性以及优化查询性能。子查询允许开发者在查询中嵌套其他查询&#xff0c;而视图则是对复杂查询的封装&#xff0c;可以简化开发工作并提高代码的可维护性。 本章将深入探讨如何…

【论文阅读】 Learning to Upsample by Learning to Sample

论文结构目录 一、之前的上采样器二、DySample概述三、不同上采样器比较四、整体架构五、设计过程&#xff08;1&#xff09;初步设计&#xff08;2&#xff09;第一次修改&#xff08;3&#xff09;第二次修改&#xff08;4&#xff09;第三次修改 六、DySample四种变体七、复…

Online Judge——【前端项目初始化】项目通用布局开发及初始化

目录 一、新建layouts二、更新App.vue文件三、选择一个布局&#xff08;Layout&#xff09;四、通用菜单Menu的实现菜单路由改为读取路由文件 五、绑定跳转事件六、同步路由到菜单项 一、新建layouts 这里新建一个专门存放布局的布局文件layouts&#xff1a; 然后在该文件夹&…

uniapp首页样式,实现菜单导航结构

实现菜单导航结构 1.导入字体图标库需要的文件 2.修改引用路径iconfont.css 3.导入到App.vue中 <style>import url(./static/font/iconfont.css); </style>导航区域代码 VUE代码 <template><view class"home"><!-- 导航区域 --><…

《代码随想录》刷题笔记——栈与队列篇【java实现】

文章目录 用栈实现队列用队列实现栈有效的括号我的解法代码随想录 删除字符串中的所有相邻重复项我的解法代码随想录栈解法字符串充当栈※双指针 逆波兰表达式求值我的解法代码随想录 滑动窗口最大值我的解法暴力解法暴力解法一点优化单调队列 代码随想录单调队列 前 K 个高频元…