2024数学建模亚太赛【C题】赛题详细解析

news2024/11/28 11:27:21

目录

📑一、竞赛时间

🗝️二、奖项设置

✏️三、选题思路

🔍阶段一:【数据预处理与探索性分析】

1.【数据清洗与预处理】

2.【探索性数据分析(EDA)】

🔍阶段二:【时间序列建模与预测】

1、【时间序列建模:预测未来发展趋势】

2、【多变量时间序列预测】

🔍阶段三:【全球市场对比分析】

1、【数据整合与特征构建】

2、【回归建模】

🔍阶段四:【策略建议制定】

🎈四、推荐技术与方法

1. 数据分析工具

2. 时间序列与回归模型

📑一、竞赛时间

2024年11月21日 6:00  —  11月25日 9:00

🗝️二、奖项设置

------------------- 等级奖项--------------------

"亚太杯”创新奖:6 支(每题2支),奖金1000元/队,证书;

一等奖:5%,证书;

二等奖:15%,证书;

三等奖:25%,证书;

成功参赛奖:若干,证书;

--------------------组织类荣誉 --------------------

优秀指导教师

优秀组织单位

✏️三、选题思路

C题:宠物产业及相关产业的

C题属于大数据分析与行业预测类问题,是许多同学在数据竞赛和实践中经常遇到的题型之一。此类题目综合性强,不仅要求良好的数据处理与建模能力,还需要结合行业背景和政策导向提出合理的策略建议。C题具有较高的开放性和适中的难度,适合各专业的学生参与。对于初学者而言,该题目的门槛较低,而对于具有建模经验的同学,则可在题目开放性中挖掘更多创新点。本文将从题目背景、分析方法、建模步骤以及策略制定等方面详细展开解题思路。

建议初学者同学进行选择】

C题关注宠物产业的发展与市场需求分析。题目要求基于历史数据分析行业趋势,构建预测模型,并提出针对性的策略建议。研究应从多个维度(如宠物类型、市场需求等)对行业数据进行全面分析,同时结合全球产业特点与中国市场现状,制定切实可行的商业发展策略。

🔍阶段一:【数据预处理与探索性分析】

1.【数据清洗与预处理】

缺失值处理: 确定数据中是否存在缺失值,可采用均值填补、插值法或基于模型的预测填补方法。

异常值检测: 利用箱线图或IQR规则识别并处理异常值,避免其对模型构建的影响。

数据标准化: 对于量纲不同的变量,采用归一化或标准化方法(如z-score)进行处理,提高模型的收敛性。

2.【探索性数据分析(EDA)】

探索性数据分析是理解数据特性和趋势的重要步骤,建议采用以下方法:

单变量分析: 使用直方图、密度图等方法分析单个变量的分布,了解宠物种类、市场规模等数据特征。

双变量关系: 使用散点图、箱线图、热力图等方法分析变量间的关系,例如市场需求与宠物类型、时间趋势与销售额的相关性。

时间序列趋势: 使用折线图观察时间序列数据的波动和趋势,明确是否存在周期性或季节性。

地理分布分析: 如果数据包含地理维度,可用地理热力图展示不同区域的市场规模分布情况。

推荐工具Python(Pandas、Matplotlib、Seaborn)、Tableau等。

🔍阶段二:【时间序列建模与预测】

1、【时间序列建模:预测未来发展趋势】

时间序列数据在本题中具有重要作用,建议以下模型进行预测:

ARIMA模型:适用于线性趋势的时间序列,能够捕捉行业发展中的长期趋势和季节性波动。

Prophet模型: 对非线性趋势、突变点更具鲁棒性,适合处理复杂的宠物产业销售数据。

LSTM模型: 如果数据量较大且趋势较复杂,可采用长短期记忆网络(LSTM)对时间序列数据建模。

建模步骤:

数据拆分:划分训练集与测试集,确保模型的预测能力可验证。

数据平稳化:使用差分、对数变换等方法将序列平稳化。

参数调优:通过网格搜索调整模型参数(如ARIMA的p、d、q参数)。

预测与评估:利用均方误差(MSE)、均方根误差(RMSE)等指标评估模型性能。

2、【多变量时间序列预测】

结合多维度数据(如宠物类型、市场规模等),构建多变量预测模型,更全面地预测行业趋势。

🔍阶段三:【全球市场对比分析】

1、【数据整合与特征构建】

欧美市场数据:收集欧美宠物产业的相关数据(如市场规模、消费习惯),提取关键特征进行对比分析。

特征工程: 构建宠物类型、食品需求、政策影响等关键变量,确保模型能够捕捉全球市场的显著差异。

2、【回归建模】

目标: 预测全球宠物食品需求量,揭示中国市场在全球竞争中的地位。

推荐模型: 使用线性回归、随机森林回归或XGBoost模型,通过特征重要性分析找出影响全球需求的关键变量。

🔍阶段四:【策略建议制定】

在数据分析和预测结果的基础上,结合行业背景提出针对性的商业发展策略:

宠物类型的细分策略: 针对犬类、猫类和其他宠物需求的差异,优化产品线和服务模式。

区域发展策略: 基于地理分布分析,重点发展需求增长显著的区域市场。

国际化战略: 借助全球市场对比分析,制定出口策略,聚焦潜力市场(如新兴国家)。

政策应对策略: 关注政府对宠物食品生产与出口的政策支持,最大化政策红利。

建议结合文献研究,参考已成功案例验证策略的可行性。

🎈四、推荐技术与方法

1. 数据分析工具

Python库:Pandas(数据处理)、NumPy(数值计算)、Seaborn/Matplotlib(可视化)。

交互式工具:Tableau或Power BI,用于快速生成可视化报告。

2. 时间序列与回归模型

时间序列:statsmodels、Prophet、TensorFlow/Keras(深度学习)。

回归分析:sklearn、XGBoost。

【点关注,不迷路】

持续更新其它赛题思路

及每个赛题详细方案...

后台留言,提供免费指导

小伙伴儿们,你们选的哪个题呢?

欢迎在下方留言呦~

欢迎关注:  一点AI-技术专区

------这是来自厦门大学  、西北工业大学 中国海洋大学新加坡国立大学香港科技大学大阪大学等国内外高校的硕博学生和导师团队制作的低门槛AI教育资源,可以更容易地学习针对与兴趣、科研、实战企业应用层面的AI技术。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2249017.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据结构 【堆实现】

上文提到堆是一种特殊的二叉树,其中它的父结点均不大于或者不小于其子结点的值。堆总是一棵完全二叉树。其中,堆的父节点全部不小于它的子结点时称为大堆,堆的父结点全部不大于其子结点的堆称为小堆。 堆可以由两种结构来实现,分别…

【AI绘画】Midjourney进阶:色调详解(下)

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: AI绘画 | Midjourney 文章目录 💯前言💯Midjourney中的色彩控制为什么要控制色彩?为什么要在Midjourney中控制色彩? 💯色调纯色调灰色调暗色调 &#x1f4af…

[代码随想录Day24打卡] 93.复原IP地址 78.子集 90.子集II

93.复原IP地址 一个合法的IP地址是什么样的: 有3个’.分割得到4个数,每个数第一个数不能是0,不能含有非法字符,不能大于255。 这个是否属于合法IP相当于一个分割问题,把一串字符串分割成4部分,分别判断每…

“harmony”整合不同平台的单细胞数据之旅

其实在Seurat v3官方网站的Vignettes中就曾见过该算法,但并没有太多关注,直到看了北大张泽民团队在2019年10月31日发表于Cell的《Landscap and Dynamics of Single Immune Cells in Hepatocellular Carcinoma》,为了同时整合两类数据&#xf…

贴代码PasteForm框架之框架核心帮助类PasteFormHelper说明

简介 PasteForm是贴代码推出的 “新一代CRUD” ,基于ABPvNext,目的是通过对Dto的特性的标注,从而实现管理端的统一UI,借助于配套的PasteBuilder代码生成器,你可以快速的为自己的项目构建后台管理端!目前管…

杂7杂8学一点之ZC序列

重要的放在前面,优秀文章链接:5GNR漫谈13:Zadoff –Chu(ZC)序列性质 目录 1. ZC序列 1.1 ZC序列的表达式 1.2 ZC序列的特点 2. PRACH中的ZC序列 2.1 为什么要有逻辑根序列与物理根序列的概念 1. ZC序列 ZC序列&…

matlab代码--卷积神经网络的手写数字识别

1.cnn介绍 卷积神经网络(Convolutional Neural Network, CNN)是一种深度学习的算法,在图像和视频识别、图像分类、自然语言处理等领域有着广泛的应用。CNN的基本结构包括输入层、卷积层、池化层(Pooling Layer)、全连…

【Linux】—简单实现一个shell(myshell)

大家好呀,我是残念,希望在你看完之后,能对你有所帮助,有什么不足请指正!共同学习交流哦! 本文由:残念ing原创CSDN首发,如需要转载请通知 个人主页:残念ing-CSDN博客&…

基于 Flask 和 RabbitMQ 构建高效消息队列系统:从数据生成到消费

简介 在构建 Web 应用时,处理和传输大量数据是不可避免的。对于需要高效、可扩展的消息处理和异步任务执行的场景,使用 RabbitMQ(一种流行的消息队列中间件)与 Flask(一个轻量级的 Python Web 框架)结合&a…

Linux:文件管理(一)——文件描述符fd

目录 一、文件基础认识 二、C语言操作文件的接口 1.> 和 >> 2.理解“当前路径” 三、相关系统调用 1.open 2.文件描述符 3.一切皆文件 4.再次理解重定向 一、文件基础认识 文件 内容 属性。换句话说,如果在电脑上新建了一个空白文档&#xff0…

机器学习模型——线性回归

文章目录 前言1.基础概念2.代价函数3.单变量线性回归3.1加载数据3.2初始化超参数3.3梯度下降算法3.3.1初次梯度下降3.3.2 多次梯度下降3.3.3结果可视化 前言 随着互联网数据不断累积,硬件不断升级迭代,在这个信息爆炸的时代,机器学习已被应用…

如何安全高效地打开和管理动态链接库(DLL)?系统提示dll丢失问题的多种有效修复指南

动态链接库(DLL)文件是Windows操作系统中非常重要的一部分,它们包含了程序运行所需的代码和数据。当系统提示DLL文件丢失时,可能会导致应用程序无法正常运行。以下是一些安全高效地打开和管理DLL文件以及修复DLL丢失问题的方法&am…

数据结构(初阶7)---七大排序法(堆排序,快速排序,归并排序,希尔排序,冒泡排序,选择排序,插入排序)(详解)

排序 1.插入排序2.希尔排序3.冒泡排序4.选择排序(双头排序优化版)5.堆排序6.快速排序1). 双指针法2).前后指针法3).非递归法 7.归并排序1).递归版本(递归的回退就是归并)2).非递归版本(迭代版本) 计算机执行的最多的操作之一就有排序,排序是一项极其重要的技能 接下…

【JavaEE初阶 — 网络原理】初识网络原理

目录 1. 网络发展史 1.1 独立模式 1.2 网络互连 1.2.1 网络互联的背景 1.2.2 网络互联的定义 1.3 局域网LAN 1.4 广域网WAN 2. 网络通信基础 2.1 IP地址 2.2 端口号 2.3 认识协议 2.4 五元组 2.5 协议分层 2.5.1 分…

【C++习题】15.滑动窗口_串联所有单词的子串

文章目录 题目链接&#xff1a;题目描述&#xff1a;解法C 算法代码&#xff1a;图解 题目链接&#xff1a; 30. 串联所有单词的子串 题目描述&#xff1a; 解法 滑动窗口哈希表 这题和第14题不同的是&#xff1a; 哈希表不同&#xff1a;hash<string,int>left与right指…

【学术讲座】视觉计算中的深度学习方法 AIGC图像视频生成模型的推理加速

视觉计算中的深度学习方法 发展历程 backbone 强化学习、LLM等&#xff1a;有监督 && 无监督的结合 目标检测 图像分割 网络结构搜索 搜索方法 1&#xff1a;强化学习 2&#xff1a;强化学习 3&#xff1a;梯度算法 结构选择的作用 1&#xff1a;开放环境感知网络…

【VLANPWN】一款针对VLAN的安全研究和渗透测试工具

关于VLANPWN VLANPWN是一款针对VLAN的安全研究和渗透测试工具&#xff0c;该工具可以帮助广大研究人员通过对VLAN执行渗透测试&#xff0c;来研究和分析目标VLAN的安全状况。该工具专为红队研究人员和安全学习爱好者设计&#xff0c;旨在训练网络工程师提升网络的安全性能&…

机器学习之数据预处理理论——基于表格数据分析

一、机器学习中数据预处理的作用与目的 对于机器学习而言&#xff0c;数据预处理是指在数据挖掘、数据分析、模型构建训练等过程中&#xff0c;对原始数据进行一系列的处理&#xff0c;以提高数据质量、减少噪声、提取有用信息等。数据预处理的主要目的是将原始数据转换为有用的…

如何写出好证明(支持思想的深入数学写作)

不断的修改和精炼是写作过程中的重要环节&#xff0c;数学写作最终目的是提供对问题的深刻洞察而非仅仅陈述细节。 根据harvey mudd college Francis Su教授的《GUIDELINES FOR GOOD MATHEMATICAL WRITING》讲稿&#xff0c;总结出撰写好的数学证明需要注意以下几个要点&#x…

中英双语介绍DeepSpeed 的 ZeRO 优化

DeepSpeed 的 ZeRO 优化&#xff1a;通俗易懂的原理与实践指南 引言 在深度学习的大规模模型训练中&#xff0c;显存瓶颈是常见的挑战。DeepSpeed 提供了革命性的 ZeRO (Zero Redundancy Optimizer) 优化技术&#xff0c;为大模型训练节省显存、提高效率提供了强有力的工具。…