“harmony”整合不同平台的单细胞数据之旅

news2024/11/28 11:18:08

其实在Seurat v3官方网站的Vignettes中就曾见过该算法,但并没有太多关注,直到看了北大张泽民团队在2019年10月31日发表于Cell《Landscap and Dynamics of Single Immune Cells in Hepatocellular Carcinoma》,为了同时整合两类数据(包括SMART-seq2和10X)(Hemberg-lab单细胞转录组数据分析(七)- 导入10X和SmartSeq2数据Tabula Muris),使不同平台的数据可以整合一起进行非监督聚类(基因共表达聚类分析和可视化),作者使用了harmony算法。

其实该算法于2018年就已经发表于bioRxiv(https://www.biorxiv.org/content/early/2018/11/04/461954) ,其算法逻辑如下图所示:

图片

图1. Harmony算法概述

harmony算法与其他整合算法相比的优势

(1)整合数据的同时对稀有细胞的敏感性依然很好;
(2)省内存;
(3)适合于更复杂的单细胞分析实验设计,可以比较来自不同供体,组织和技术平台的细胞。

基本原理:我们用不同颜色表示不同数据集,用形状表示不同的细胞类型。首先,Harmony应用主成分分析(一文看懂PCA主成分分析)将转录组表达谱嵌入到低维空间中,然后应用迭代过程去除数据集特有的影响。

(A)Harmony概率性地将细胞分配给cluster,从而使每个cluster内数据集的多样性最大化。
(B)Harmony计算每个cluster的所有数据集的全局中心,以及特定数据集的中心。
(C)在每个cluster中,Harmony基于中心为每个数据集计算校正因子。
(D)最后,Harmony使用基于C的特定于细胞的因子校正每个细胞。由于Harmony使用软聚类,因此可以通过多个因子的线性组合对其A中进行的软聚类分配进行线性校正,来修正每个单细胞。
重复步骤A到D,直到收敛为止。聚类分配和数据集之间的依赖性随着每一轮的减少而减小。

安装

library(devtools)
install_github("immunogenomics/harmony")

流程

我们以Seurat v3为例,使用harmony进行数据整合:

library(Seurat)
library(cowplot)
library(harmony)

首先,下载稀疏矩阵示例(https://www.dropbox.com/s/t06tptwbyn7arb6/pbmc_stim.RData?dl=1)并将其移动到文件夹下(例如data/)。

load('data/pbmc_stim.RData') #加载矩阵数据

Initialize Seurat Object

在运行Harmony之前,创建一个Seurat对象并按照标准PCA(用了这么多年的PCA可视化竟然是错的!!!)进行分析。

pbmc <- CreateSeuratObject(counts = cbind(stim.sparse, ctrl.sparse), project = "PBMC", min.cells = 5) %>%
    Seurat::NormalizeData(verbose = FALSE) %>%
    FindVariableFeatures(selection.method = "vst", nfeatures = 2000) %>%
    ScaleData(verbose = FALSE) %>%
    RunPCA(pc.genes = pbmc@var.genes, npcs = 20, verbose = FALSE)

R语言中%>%的含义是什么呢,管道函数啦,就是把左件的值发送给右件的表达式,并作为右件表达式函数的第一个参数。

pbmc@meta.data$stim <- c(rep("STIM", ncol(stim.sparse)), rep("CTRL", ncol(ctrl.sparse)))#赋值条件变量

未经校正的PC中的数据集之间存在明显差异:

options(repr.plot.height = 5, repr.plot.width = 12)
p1 <- DimPlot(object = pbmc, reduction = "pca", pt.size = .1, group.by = "stim", do.return = TRUE)
p2 <- VlnPlot(object = pbmc, features = "PC_1", group.by = "stim", do.return = TRUE, pt.size = .1)
plot_grid(p1,p2)

图片

Run Harmony

运行Harmony的最简单方法是传递Seurat对象并指定要集成的变量。RunHarmony返回Seurat对象,并使用更正后的Harmony坐标。让我们将plot_convergence设置为TRUE,这样我们就可以确保Harmony目标函数在每一轮中都变得更好。

options(repr.plot.height = 2.5, repr.plot.width = 6)
pbmc <- pbmc %>%
RunHarmony("stim", plot_convergence = TRUE)
Harmony 1/10
Harmony 2/10
Harmony 3/10
Harmony 4/10
Harmony 5/10
Harmony 6/10
Harmony 7/10
Harmony 8/10
Harmony converged after 8 iterations

图片

要直接访问新的Harmony embeddings,请使用Embeddings命令。

harmony_embeddings <- Embeddings(pbmc, 'harmony')
harmony_embeddings[1:5, 1:5]

图片

让我们查看确认数据集在Harmony运行之后的前两个维度中得到很好的整合。

options(repr.plot.height = 5, repr.plot.width = 12)
p1 <- DimPlot(object = pbmc, reduction = "harmony", pt.size = .1, group.by = "stim", do.return = TRUE)
p2 <- VlnPlot(object = pbmc, features = "harmony_1", group.by = "stim", do.return = TRUE, pt.size = .1)
plot_grid(p1,p2)

图片

Downstream analysis

许多下游分析是在低维嵌入而不是基因表达上进行的。要使用校正后的Harmony embeddings而不是PC(还在用PCA降维?快学学大牛最爱的t-SNE算法吧, 附Python/R代码),请设置reduction ='harmony'。例如,让我们使用Harmony降维后的数据执行UMAPNearest Neighbor分析。

pbmc <- pbmc %>%
    RunUMAP(reduction = "harmony", dims = 1:20) %>%
    FindNeighbors(reduction = "harmony", dims = 1:20) %>%
    FindClusters(resolution = 0.5) %>%
    identity()

图片

在UMAP embedding中,我们可以看到更复杂的结构。由于我们使用harmony embeddings,因此UMAP embeddings混合得很好。

options(repr.plot.height = 4, repr.plot.width = 10)
DimPlot(pbmc, reduction = "umap", group.by = "stim", pt.size = .1, split.by = 'stim')

图片

在这种充分混合的嵌入中,我们可以开始使用聚类分析来识别细胞类型(Celaref | 单细胞测序细胞类型注释工具)。

options(repr.plot.height = 4, repr.plot.width = 6)
DimPlot(pbmc, reduction = "umap", label = TRUE, pt.size = .1)

图片

快来试一试:https://github.com/immunogenomics/harmony

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2249011.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

贴代码PasteForm框架之框架核心帮助类PasteFormHelper说明

简介 PasteForm是贴代码推出的 “新一代CRUD” &#xff0c;基于ABPvNext&#xff0c;目的是通过对Dto的特性的标注&#xff0c;从而实现管理端的统一UI&#xff0c;借助于配套的PasteBuilder代码生成器&#xff0c;你可以快速的为自己的项目构建后台管理端&#xff01;目前管…

杂7杂8学一点之ZC序列

重要的放在前面&#xff0c;优秀文章链接&#xff1a;5GNR漫谈13&#xff1a;Zadoff –Chu&#xff08;ZC&#xff09;序列性质 目录 1. ZC序列 1.1 ZC序列的表达式 1.2 ZC序列的特点 2. PRACH中的ZC序列 2.1 为什么要有逻辑根序列与物理根序列的概念 1. ZC序列 ZC序列&…

matlab代码--卷积神经网络的手写数字识别

1.cnn介绍 卷积神经网络&#xff08;Convolutional Neural Network, CNN&#xff09;是一种深度学习的算法&#xff0c;在图像和视频识别、图像分类、自然语言处理等领域有着广泛的应用。CNN的基本结构包括输入层、卷积层、池化层&#xff08;Pooling Layer&#xff09;、全连…

【Linux】—简单实现一个shell(myshell)

大家好呀&#xff0c;我是残念&#xff0c;希望在你看完之后&#xff0c;能对你有所帮助&#xff0c;有什么不足请指正&#xff01;共同学习交流哦&#xff01; 本文由&#xff1a;残念ing原创CSDN首发&#xff0c;如需要转载请通知 个人主页&#xff1a;残念ing-CSDN博客&…

基于 Flask 和 RabbitMQ 构建高效消息队列系统:从数据生成到消费

简介 在构建 Web 应用时&#xff0c;处理和传输大量数据是不可避免的。对于需要高效、可扩展的消息处理和异步任务执行的场景&#xff0c;使用 RabbitMQ&#xff08;一种流行的消息队列中间件&#xff09;与 Flask&#xff08;一个轻量级的 Python Web 框架&#xff09;结合&a…

Linux:文件管理(一)——文件描述符fd

目录 一、文件基础认识 二、C语言操作文件的接口 1.> 和 >> 2.理解“当前路径” 三、相关系统调用 1.open 2.文件描述符 3.一切皆文件 4.再次理解重定向 一、文件基础认识 文件 内容 属性。换句话说&#xff0c;如果在电脑上新建了一个空白文档&#xff0…

机器学习模型——线性回归

文章目录 前言1.基础概念2.代价函数3.单变量线性回归3.1加载数据3.2初始化超参数3.3梯度下降算法3.3.1初次梯度下降3.3.2 多次梯度下降3.3.3结果可视化 前言 随着互联网数据不断累积&#xff0c;硬件不断升级迭代&#xff0c;在这个信息爆炸的时代&#xff0c;机器学习已被应用…

如何安全高效地打开和管理动态链接库(DLL)?系统提示dll丢失问题的多种有效修复指南

动态链接库&#xff08;DLL&#xff09;文件是Windows操作系统中非常重要的一部分&#xff0c;它们包含了程序运行所需的代码和数据。当系统提示DLL文件丢失时&#xff0c;可能会导致应用程序无法正常运行。以下是一些安全高效地打开和管理DLL文件以及修复DLL丢失问题的方法&am…

数据结构(初阶7)---七大排序法(堆排序,快速排序,归并排序,希尔排序,冒泡排序,选择排序,插入排序)(详解)

排序 1.插入排序2.希尔排序3.冒泡排序4.选择排序(双头排序优化版)5.堆排序6.快速排序1). 双指针法2).前后指针法3).非递归法 7.归并排序1).递归版本(递归的回退就是归并)2).非递归版本(迭代版本) 计算机执行的最多的操作之一就有排序&#xff0c;排序是一项极其重要的技能 接下…

【JavaEE初阶 — 网络原理】初识网络原理

目录 1. 网络发展史 1.1 独立模式 1.2 网络互连 1.2.1 网络互联的背景 1.2.2 网络互联的定义 1.3 局域网LAN 1.4 广域网WAN 2. 网络通信基础 2.1 IP地址 2.2 端口号 2.3 认识协议 2.4 五元组 2.5 协议分层 2.5.1 分…

【C++习题】15.滑动窗口_串联所有单词的子串

文章目录 题目链接&#xff1a;题目描述&#xff1a;解法C 算法代码&#xff1a;图解 题目链接&#xff1a; 30. 串联所有单词的子串 题目描述&#xff1a; 解法 滑动窗口哈希表 这题和第14题不同的是&#xff1a; 哈希表不同&#xff1a;hash<string,int>left与right指…

【学术讲座】视觉计算中的深度学习方法 AIGC图像视频生成模型的推理加速

视觉计算中的深度学习方法 发展历程 backbone 强化学习、LLM等&#xff1a;有监督 && 无监督的结合 目标检测 图像分割 网络结构搜索 搜索方法 1&#xff1a;强化学习 2&#xff1a;强化学习 3&#xff1a;梯度算法 结构选择的作用 1&#xff1a;开放环境感知网络…

【VLANPWN】一款针对VLAN的安全研究和渗透测试工具

关于VLANPWN VLANPWN是一款针对VLAN的安全研究和渗透测试工具&#xff0c;该工具可以帮助广大研究人员通过对VLAN执行渗透测试&#xff0c;来研究和分析目标VLAN的安全状况。该工具专为红队研究人员和安全学习爱好者设计&#xff0c;旨在训练网络工程师提升网络的安全性能&…

机器学习之数据预处理理论——基于表格数据分析

一、机器学习中数据预处理的作用与目的 对于机器学习而言&#xff0c;数据预处理是指在数据挖掘、数据分析、模型构建训练等过程中&#xff0c;对原始数据进行一系列的处理&#xff0c;以提高数据质量、减少噪声、提取有用信息等。数据预处理的主要目的是将原始数据转换为有用的…

如何写出好证明(支持思想的深入数学写作)

不断的修改和精炼是写作过程中的重要环节&#xff0c;数学写作最终目的是提供对问题的深刻洞察而非仅仅陈述细节。 根据harvey mudd college Francis Su教授的《GUIDELINES FOR GOOD MATHEMATICAL WRITING》讲稿&#xff0c;总结出撰写好的数学证明需要注意以下几个要点&#x…

中英双语介绍DeepSpeed 的 ZeRO 优化

DeepSpeed 的 ZeRO 优化&#xff1a;通俗易懂的原理与实践指南 引言 在深度学习的大规模模型训练中&#xff0c;显存瓶颈是常见的挑战。DeepSpeed 提供了革命性的 ZeRO (Zero Redundancy Optimizer) 优化技术&#xff0c;为大模型训练节省显存、提高效率提供了强有力的工具。…

如何将 GitHub 私有仓库(private)转换为公共仓库(public)

文章目录 如何将 GitHub 私有仓库转换为公共仓库步骤 1: 登录 GitHub步骤 2: 导航到目标仓库步骤 3: 访问仓库设置步骤 4: 更改仓库可见性步骤 5: 确认更改步骤 6: 验证更改注意事项 如何将 GitHub 私有仓库转换为公共仓库 在软件开发领域&#xff0c;GitHub 是一个广受欢迎的…

【webrtc】 mediasoup中m77的IntervalBudget及其在AlrDetector的应用

IntervalBudget 用于带宽控制和流量整形 mediasoup中m77 代码的IntervalBudget ,版本比较老IntervalBudget 在特定时间间隔内的比特预算管理,从而实现带宽控制和流量整形。 一。 pacedsender 执行周期: 下一次执行的时间的动态可变的 int64_t PacedSender::TimeUntilNextPr…

Z2400023基于Java+Servlet+jsp+mysql的酒店管理系统的设计与实现 源码 调试 文档

酒店管理系统的设计与实现 1.摘要2.主要功能3. 项目技术栈运行环境 4.系统界面截图5.源码获取 1.摘要 本文介绍了一个基于Java的酒店管理系统&#xff0c;该系统采用Servlet、JSP、JDBC以及c3p0等技术构建&#xff0c;为酒店提供了一个全面的管理平台。该系统不仅适合酒店进行…

《操作系统 - 清华大学》5 -5:缺页异常

文章目录 1. 缺页异常的处理流程2.在何处保存未被映射的页&#xff1f;3. 虚拟内存性能 1. 缺页异常的处理流程 缺页中断的处理过程: CPU读内存单元&#xff0c;在TLB中根据其虚拟地址匹配物理地址&#xff0c;未命中&#xff0c;读页表; 由于页表项的存在位为0&#xff0c;CP…