C++中的原子操作:原子性、内存顺序、性能优化与原子变量赋值

news2024/11/27 6:27:42

一、原子操作与原子性

原子操作(atomic operation)是并发编程中的一个核心概念,指的是在多线程环境中,一个操作一旦开始,就不会被其他线程的操作打断,直至该操作完成。这种不可分割的特性保证了操作的原子性,即要么全部做完,要么全部不做。原子操作在多线程编程中非常重要,因为它能有效避免数据竞争和条件竞争等问题,从而确保程序的正确性和稳定性。

C++11引入了原子操作,通过<atomic>头文件提供了一系列原子类型和函数,如std::atomic<T>,用于确保对共享数据的操作是原子的。原子类型提供了一系列成员函数来执行原子操作,这些操作包括加载(load)、存储(store)、加法(fetch_add、add)、减法(fetch_sub、sub)、交换(exchange)和比较并交换(compare_exchange_weak、compare_exchange_strong)等。

二、原子变量赋值操作

在C++中,原子变量赋值是通过std::atomic模板类实现的,提供了多种方法来对原子变量进行赋值和修改。以下是一些常见的原子变量赋值操作及其示例:

  • 基本赋值

    基本赋值操作是使用赋值运算符(=)直接将一个新值赋给原子变量。例如:

std::atomic<int> counter(0); // 声明一个原子整数变量,初始值为0
counter = 10; // 将10赋给counter

  • 原子加法与减法

            使用fetch_addadd等成员函数可以实现原子加法操作,fetch_subsub等成员函数可以实现原子减法操作。fetch_addfetch_sub返回加法或减法操作之前的值,而addsub返回加法或减法操作之后的值。例如:


	std::atomic<int> counter(0);

	int oldValue = counter.fetch_add(1); // 将counter的值加1,并返回加1之前的值

	int newValue = counter.add(5); // 将counter的值加5,并返回加5之后的值

	


	oldValue = counter.fetch_sub(3); // 将counter的值减3,并返回减3之前的值

	newValue = counter.sub(2); // 将counter的值减2,并返回减2之后的值

  • 原子交换

    使用exchange成员函数可以实现原子交换操作,即将原子变量的当前值与一个新值进行交换,并返回交换之前的值。例如:

std::atomic<int> counter(5);
int oldValue = counter.exchange(10); // 将counter的值与10进行交换,并返回交换之前的值5
  • 原子比较并交换

            使用compare_exchange_weakcompare_exchange_strong成员函数可以实现原子比较并交换操作。这两个函数都尝试将原子变量的当前值与一个期望值进行比较,如果相等,则将其设置为一个新值,并返回true;如果不相等,则返回false,并将期望值更新为当前值。compare_exchange_weak在某些平台上可能会由于性能优化而偶尔失败(即使当前值与期望值相等),而compare_exchange_strong则保证在当前值与期望值相等时一定会成功。例如:


	std::atomic<int> counter(5);

	int expected = 5;

	bool success = counter.compare_exchange_strong(expected, 10); // 如果counter的值等于5,则将其设置为10,并返回true;否则返回false,并将expected更新为counter的当前值

  • 原子性值传递

        有时,我们需要将一个原子变量的值从一个对象复制到另一个对象。这可以通过load()store()成员函数来实现。load()函数用于从原子变量中加载当前值,而store()函数用于将一个新值存储到原子变量中。以下是一个示例:

std::atomic<int> original(5); // 声明一个原子整数变量,初始值为5
std::atomic<int> target(0); // 声明另一个原子整数变量,初始值为0


// 将original的值加载到局部变量中(虽然在这个例子中不是必需的,但展示了load的用法)
int value = original.load();


// 直接将original的值存储到target中,这是一个原子操作
target.store(original.load()); // 将原始对象的值存储到目标对象


// 此时,target的值也是5
三、内存顺序

内存顺序(Memory Order)是多线程编程中一个非常重要的概念,它定义了在多处理器或多核环境中,内存访问的次序。C++11标准明确引入了内存顺序,用于指定原子操作的顺序性,以避免多线程环境下的数据竞争问题。

C++11标准定义了多种内存顺序类型,包括memory_order_relaxedmemory_order_consumememory_order_acquirememory_order_releasememory_order_acq_relmemory_order_seq_cst等。在实际编程中,开发者需要根据操作的目的和上下文环境来确定合适的内存顺序。

选择合适的内存顺序可以在保证正确性的前提下提高性能。例如,使用memory_order_relaxed可以放松对内存顺序的要求,从而减少同步开销,但可能会引入数据竞争的风险。相反,使用memory_order_seq_cst可以确保最强的顺序性保证,但可能会增加同步开销。

四、性能优化

原子操作通过避免锁的使用,减少了线程之间的竞争和上下文切换开销,从而提高了多线程程序的性能。然而,性能优化并非一味追求宽松的内存顺序,而需要在正确性和性能之间取得平衡。

以下是一些性能优化的建议:

  1. 选择合适的内存顺序:在保证线程安全的前提下,尽量使用宽松的内存顺序可以减少同步操作,从而提升性能。然而,过度放宽内存顺序可能会导致难以调试的并发问题。

  2. 利用硬件特性:不同CPU架构和编译器的实现对原子操作的支持和优化程度不同。深入理解平台特性,利用硬件提供的原子性支持和缓存一致性机制,可以进一步提高程序的性能。

  3. 减少不必要的同步:通过合理设计算法和数据结构,减少线程间的同步需求。例如,使用无锁数据结构、读写锁等高级同步机制,可以在保持线程安全的同时,减少同步开销。

  4. 避免忙等待:在需要等待某个条件成立时,避免使用忙等待(busy-waiting)的方式。忙等待会消耗大量的CPU资源,并可能导致性能下降。相反,可以使用条件变量、信号量等同步机制来实现高效的等待和通知机制。

综上所述,深入理解C++中的原子操作、原子性、内存顺序、性能优化以及原子变量赋值操作,对于编写高效且正确的并发代码至关重要。通过合理选择内存顺序、利用硬件特性、减少不必要的同步和避免忙等待等策略,可以在保证程序正确性的同时实现性能的优化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2248247.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【贪心算法第五弹——300.最长递增子序列】

目录 1.题目解析 题目来源 测试用例 2.算法原理 3.实战代码 代码解析 注意本题还有一种动态规划的解决方法&#xff0c;贪心的方法就是从动态规划的方法总结而来&#xff0c;各位可以移步博主的另一篇博客先了解一下&#xff1a;动态规划-子序列问题——300.长递增子序列…

Spring Boot——统一功能处理

1. 拦截器 拦截器主要用来拦截用户的请求&#xff0c;在指定方法前后&#xff0c;根据业务需要执行设定好的代码&#xff0c;也就是提前定义一些逻辑&#xff0c;在用户的请求响应前后执行&#xff0c;也可以在用户请求前阻止其执行&#xff0c;例如登录操作&#xff0c;只有登…

【2024】前端学习笔记19-ref和reactive使用

学习笔记 1.ref2.reactive3.总结 1.ref ref是 Vue 3 中用来创建响应式引用的一个函数&#xff0c;通常用于基本数据类型&#xff08;如字符串、数字、布尔值等&#xff09;或对象/数组的单一值。 ref特点&#xff1a; ref 可以用来创建单个响应式对象对于 ref 包裹的值&…

javaweb-day01-html和css初识

html:超文本标记语言 CSS&#xff1a;层叠样式表 1.html实现新浪新闻页面 1.1 标题排版 效果图&#xff1a; 1.2 标题颜色样式 1.3 标签内颜色样式 1.4设置超链接 1.5 正文排版 1.6 页面布局–盒子 &#xff08;1&#xff09;盒子模型 &#xff08;2&#xff09;页面布局…

3mf 格式详解,javascript加载导出3mf文件示例

3MF 格式详解 3MF&#xff08;3D Manufacturing Format&#xff09;是一种开放标准的文件格式&#xff0c;专门用于三维制造和打印。3MF 格式旨在解决 STL 格式的局限性&#xff0c;提供更丰富和灵活的数据表示。3MF 文件是一种 ZIP 文件&#xff0c;其中包含了描述三维模型的…

音视频流媒体直播/点播系统EasyDSS互联网视频云平台介绍

随着互联网技术的飞速发展&#xff0c;音视频流媒体直播已成为现代社会信息传递与娱乐消费的重要组成部分。在这样的背景下&#xff0c;EasyDSS互联网视频云平台应运而生&#xff0c;它以高效、稳定、便捷的特性&#xff0c;为音视频流媒体直播领域带来了全新的解决方案。 1、产…

c++:面向对象三大特性--继承

面向对象三大特性--继承 一、继承的概念及定义&#xff08;一&#xff09;概念&#xff08;二&#xff09;继承格式1、继承方式2、格式写法3、派生类继承后访问方式的变化 &#xff08;三&#xff09;普通类继承&#xff08;四&#xff09;类模板继承 二、基类和派生类的转换&a…

【Linux学习】【Ubuntu入门】2-5 shell脚本入门

1.shell脚本就是将连续执行的命令携程一个文件 2.第一个shell脚本写法 shell脚本是个纯文本文件&#xff0c;命令从上而下&#xff0c;一行一行开始执行&#xff0c;其扩展名为.sh&#xff0c;shell脚本第一行一定要为&#xff1a;#!/bin/bash&#xff0c;表示使用bash。echo…

Jmeter中的测试片段和非测试原件

1&#xff09;测试片段 1--测试片段 功能特点 重用性&#xff1a;将常用的测试元素组合成一个测试片段&#xff0c;便于在多个线程组中重用。模块化&#xff1a;提高测试计划的模块化程度&#xff0c;使测试计划更易于管理和维护。灵活性&#xff1a;可以通过模块控制器灵活地…

VisionPro 机器视觉案例 之 凹点检测

第十六篇 机器视觉案例 之 凹点检测 文章目录 第十六篇 机器视觉案例 之 凹点检测1.案例要求2.实现思路2.1 方式一&#xff1a;斑点工具加画线工具加点线距离工具2.2 方法二 使用斑点工具的结果集边缘坐标的横坐标最大值ImageBoundMaxX2.3 方法三 使用斑点工具的结果集凹点结果…

Java ArrayList 与顺序表:在编程海洋中把握数据结构的关键之锚

我的个人主页 我的专栏&#xff1a;Java-数据结构&#xff0c;希望能帮助到大家&#xff01;&#xff01;&#xff01;点赞❤ 收藏❤ 前言&#xff1a;在 Java编程的广袤世界里&#xff0c;数据结构犹如精巧的建筑蓝图&#xff0c;决定着程序在数据处理与存储时的效率、灵活性以…

【k8s】资源限制管理:Namespace、Deployment与Pod的实践

&#x1f407;明明跟你说过&#xff1a;个人主页 &#x1f3c5;个人专栏&#xff1a;《Kubernetes航线图&#xff1a;从船长到K8s掌舵者》 &#x1f3c5; &#x1f516;行路有良友&#xff0c;便是天堂&#x1f516; 目录 一、引言 1、什么是k8s 2、在k8s使用资源配额的作…

lua除法bug

故事背景&#xff0c;新来了一个数值&#xff0c;要改公式。神奇的一幕出现了&#xff0c;公式算出一个非常大的数。排查是lua有一个除法bug,1除以大数得到一个非常大的数。 function div(a, b)return tonumber(string.format("%.2f", a/b)) end print(1/73003) pri…

微信小程序学习指南从入门到精通

&#x1f5fd;微信小程序学习指南从入门到精通&#x1f5fd; &#x1f51d;微信小程序学习指南从入门到精通&#x1f51d;✍前言✍&#x1f4bb;微信小程序学习指南前言&#x1f4bb;一、&#x1f680;文章列表&#x1f680;二、&#x1f52f;教程文章的好处&#x1f52f;1. ✅…

《基于FPGA的便携式PWM方波信号发生器》论文分析(三)——数码管稳定显示与系统调试

一、论文概述 基于FPGA的便携式PWM方波信号发生器是一篇由任青颖、庹忠曜、黄洵桢、李智禺和张贤宇 等人发表的一篇期刊论文。该论文主要研究了一种新型的信号发生器&#xff0c;旨在解决传统PWM信号发生器在移动设备信号调控中存在的精准度低和便携性差的问题 。其基于现场可编…

计算机操作系统——进程控制(Linux)

进程控制 进程创建fork&#xff08;&#xff09;函数fork() 的基本功能fork() 的基本语法fork() 的工作原理fork() 的典型使用示例fork() 的常见问题fork() 和 exec() 结合使用总结 进程终止与$进程终止的本质进程终止的情况正常退出&#xff08;Exit&#xff09;由于信号终止非…

【贪心算法第四弹——376.摆动序列】

目录 1.题目解析 题目来源 测试用例 2.算法原理 3.实战代码 代码解析 本题还可以使用动态规划的解法来解决&#xff0c;不过动态规划的时间复杂度为O(N^2)&#xff0c;而贪心解法的时间复杂度为O(N)&#xff0c;动态规划方法的博客链接: 动态规划-子序列问题——376.摆动…

我谈离散傅里叶变换的补零

有限序列的零延拓——零延拓不会改变离散傅里叶变换的形状的续篇。 L点序列可以做N点傅里叶变换&#xff0c;当 L ⩽ N L\leqslant N L⩽N时不会产生混叠。这部分内容在Rafael Gonzalez和Richard Woods所著的《数字图像处理》完全没有提到。 补零是序列末尾补零&#xff0c;不…

day18 结构体

有参宏和函数的区别 1.展开时机&#xff1a;有参宏而言&#xff0c;在预处理阶段展开&#xff0c;而函数在调用时才展开 2.内存使用&#xff1a;有参宏而言&#xff0c;占用的是所在函数的空间&#xff0c;而函数在调用时会单独开辟空间 3.效率上&#xff1a;有参宏的效率比…

C嘎嘎探索篇:栈与队列的交响:C++中的结构艺术

C嘎嘎探索篇&#xff1a;栈与队列的交响&#xff1a;C中的结构艺术 前言&#xff1a; 小编在之前刚完成了C中栈和队列&#xff08;stack和queue&#xff09;的讲解&#xff0c;忘记的小伙伴可以去我上一篇文章看一眼的&#xff0c;今天小编将会带领大家吹奏栈和队列的交响&am…