基于Amazon Bedrock:一站式多模态数据处理新体验

news2025/1/12 21:01:54

目录

引言

关于Amazon Bedrock

基础模型体验

1、进入环境

2、发现模型及快速体验

3、打开 Amazon Bedrock 控制台

4、通过 Playgrounds 体验模型

(1)文本生成

(2)图片生成

关于资源清理

结束语


引言

在云计算和人工智能领域,亚马逊云科技 (AWS) 一直走在创新的前沿,就在最近,AWS 推出了 Amazon Bedrock,这是一个全新的服务,旨在为企业提供一种简单、灵活的方式来构建和管理多模型应用程序。那么本文就来分享关于在 Amazon Bedrock 上基础模型的初步体验,并研究它如何帮助开发者和企业实现多模态数据处理和应用开发。

关于Amazon Bedrock

Amazon Bedrock 是一项完全托管的服务,通过统一的 API 提供来自 AI21 Labs、Anthropic、Cohere、Meta、Mistral AI、Stability AI 和 Amazon 等领先 AI 公司的高性能基础模型(FMs),同时提供广泛的功能,让你能够在确保安全、隐私和负责任 AI 的前提下构建生成式 AI 应用。

也就是说Amazon Bedrock 是一个多模型服务平台,它允许用户构建和管理包含多种数据模型的应用程序,这些数据模型可以包括关系型数据库、NoSQL数据库、搜索索引和机器学习模型等。Amazon Bedrock 的设计理念是提供一个统一的平台,让开发者能够轻松地处理多种数据模型,而无需担心底层的复杂性。使用 Amazon Bedrock,我们可以:

  • 轻松地测试、评估你的用例在不同基础模型下的表现;
  • 使用微调和检索增强生成(RAG)等技术定制化开发你的应用程序;
  • 构建可以使用你的企业系统和数据源自动执行任务的智能 Agents。

由于 Amazon Bedrock 是 Serverless 的服务,我们无需管理任何基础设施,并且可以使用我们已经熟悉其它的亚马逊云科技服务安全地集成和部署生成式 AI 功能到我们的应用中,非常便捷。

基础模型体验

1、进入环境

点击 “开始实验” 按钮,即可扫码进入实验环境,需要注意的是:测试账号有效期仅为一天,过期后系统将自动回收清理,请不要上传重要数据。

同时,点击 “立即注册” AWS Console - Signup按钮即可免费注册属于你的亚马逊云科技海外区账号,开启个性化的系统构建之旅,进一步探索更广泛、更深入的云服务领域并保留实验中构建的系统应用,尽情享受云上构建的无限可能!

如果你在自己的亚马逊云科技账户上进行实验,请务必在实验完成后根据清理资源板块部分的说明删除和关闭所有实验资源,以避免产生不必要的费用。

注册成功之后,可以扫码登陆,具体如下图所示:

然后需要填写邮箱,如果你之前没有填写过邮箱,则需要填写一下邮箱,并勾选隐私协议,点击前往实验,及可进入实验室,具体如下图所示:

2、发现模型及快速体验

由于Amazon Bedrock 中包含了多个模型,从使用场景上可以分为 文本生成、图片生成、通过文本/图片生成 Embedding 等,不同场景中又包含了来自多个模型提供商的优秀模型,所以说我们可以根据自己的场景及模型效果选择适合的模型,以集成到自己的应用程序中。

另外,Amazon Bedrock 提供了两种方式访问模型,包括通过 Amazon Bedrock 控制台中的 Playground 以及 SDK,支持 Python、Java、Go 等多种编程语言。那么接下来,就来展示通过 Playgrounds 快速体验模型效果的方法。

3、打开 Amazon Bedrock 控制台

我们首先需要打开 Bedrock 控制台,访问链接 https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/ ,在右上角确认区域为 Oregon(us-west-2),如下所示:

点击概览(Overview),我们可以看到 Amazon Bedrock 支持的多种基础模型(Foundation Model),其中包括 Amazon Titan,Anthropic Claude,Jurassic,Command,Mistral,Stable Diffusion 以及 Llama3,如下所示:

4、通过 Playgrounds 体验模型

我们直接在左侧导航栏,在 Playgrounds 中我们可以看到 Chat, Text, Image 三个功能模块,含义分别为:

  • Chat: 在对话式界面中,轻松尝试各种语言处理任务。你可以体验多种预训练模型。
  • Text: 通过快速迭代,在各种语言处理任务中进行实验,尝试多种预训练模型。
  • Image: 只需向预训练模型提供文字提示,即可轻松生成引人入胜的图像。

接下来,我们将通过 Chat、Image 分别体验文本生成及图像生成的效果。

(1)文本生成

需要我们先点击 Chat 按钮,然后在 Chat Playground 页面点击选择模型(Select model)以选择期望测试的模型,如下所示:

这里以 Meta Llama 3 70B 模型为例,来体验其强大的推理能力和中文处理能力,点击应用(Apply),如下所示:

接下来,我们让模型来帮我们安排一个上海2日游的行程,使用中文回答。可以将该问题输入到聊天窗口中,将响应长度调整到 2048(防止返回结果因为 token 限制被截断;UI 上的限制为 2048 token,此模型 API 支持的最大 token 为 8k),点击运行(Run),如下所示:

具体的示例结果如下所示:

**Day 1**

**上午**

* 9:00 am: 开始于上海的标志性建筑 - 东方明珠电视塔( Oriental Pearl Tower),登塔顶俯瞰上海全景。
* 10:30 am: 从东方明珠电视塔步行到浦东陆家嘴金融区,欣赏上海的摩天大楼和繁华都市景象。

**下午**

* 1:00 pm: 去人民广场(People's Square)附近的南京路步行街,感受上海的商业气息和人流。
* 3:00 pm: 访问上海博物馆(Shanghai Museum),了解上海的历史和文化。

**晚上**

* 7:00 pm: 去外滩(The Bund)欣赏黄浦江两岸的美景,观看夜晚的灯光秀。
* 9:00 pm: 在外滩附近的餐厅享用上海特色小吃和美食。

**Day 2**

**上午**

* 9:00 am: 访问豫园(Yu Garden),欣赏中国古典园林的美景。
* 11:30 am: 去城隍庙(City God Temple)附近的老城厢,感受上海的传统文化和生活气息。

**下午**

* 1:30 pm: 去法国梧桐街(French Concession)附近的徐汇区,欣赏上海的法式建筑和浪漫气息。
* 4:00 pm: 访问上海自然博物馆(Shanghai Natural History Museum),了解自然科学和生物多样性。

**晚上**

* 7:00 pm: 去静安寺(Jing'an Temple)附近的宁波路,感受上海的夜生活和娱乐气息。
* 9:00 pm: 结束上海 2 日游的行程,带着美好的回忆离开上海。
复制

接下来我们让 Amazon Bedrock 为我们生成代码,输入如下内容:

Write a short and high-quality python script for the following task, something a very skilled python expert would write. You are writing code for an experienced developer so only add comments for things that are non-obvious. Make sure to include any imports required. NEVER write anything before the ```python``` block. After you are done generating the code and after the ```python``` block, check your work carefully to make sure there are no mistakes, errors, or inconsistencies. If there are errors, list those errors in tags, then generate a new version with those errors fixed. If there are no errors, write "CHECKED: NO ERRORS" in tags. Here is the task: A web scraper that extracts data from multiple pages and stores results in a SQLite database. Double check your work to ensure no errors or inconsistencies.

具体的示例结果如下所示:

import requests
from bs4 import BeautifulSoup
import sqlite3
from urllib.parse import urljoin, urlparse
from concurrent.futures import ThreadPoolExecutor

# Database connection
conn = sqlite3.connect('data.db')
cursor = conn.cursor()

# Create table if not exists
cursor.execute('''CREATE TABLE IF NOT EXISTS data
                   (id INTEGER PRIMARY KEY, url TEXT, title TEXT, content TEXT)''')
conn.commit()

# Base URL and pages to scrape
base_url = 'https://example.com'
pages_to_scrape = ['/page1', '/page2', '/page3']

def scrape_page(url):
    # Send request and get HTML response
    response = requests.get(urljoin(base_url, url))
    soup = BeautifulSoup(response.text, 'html.parser')

    # Extract title and content
    title = soup.find('h1').text.strip()
    content = soup.find('div', {'class': 'content'}).text.strip()

    # Insert data into database
    cursor.execute("INSERT INTO data (url, title, content) VALUES (?, ?, ?)",
                   (urljoin(base_url, url), title, content))
    conn.commit()

    print(f"Scraped {url}")

# Scrape pages concurrently
with ThreadPoolExecutor() as executor:
    executor.map(scrape_page, pages_to_scrape)

# Close database connection
conn.close()

# CHECKED: NO ERRORS
复制
(2)图片生成

在左侧导航栏点击图片(Image)链接,进入图片生成的页面。这里我们点击下方的“Generate images from a text prompt” 选择内置的文本生成图片的示例:

然后点击运行(Run),默认情况下,模型会为我们生成 3 张图片,示例结果如下所示:

我们可以点击图片查看原始图片,并执行编辑或下载等操作。

关于资源清理

通过上面的实例操作之后,建议大家在实验完成之后,要及时清理实验资源,避免产生额外的费用,切记!具体的资源清理方法如下所示:

结束语

通过上文的初步体验,想必大家都感受到了 Amazon Bedrock 在多模态数据处理和应用开发方面的强大能力,它的易用性和灵活性为开发者提供了极大的便利,同时也为企业提供了一种高效的方式来构建和管理复杂的多模型应用程序。在具体的实例中,由于篇幅原因只展示了 Amazon Bedrock 的部分功能,包括基础模型、Playgrounds、模型评估、安全围栏Guardrails 等功能模块,但是如果大家感兴趣其他功能,可以自行去了解学习使用,这里不在赘述。在不久的未来,个人觉得Amazon Bedrock 能够继续扩展其功能,支持更多的数据模型和应用场景,而且会有更多开发者利用 Amazon Bedrock 创造出创新的应用程序,推动云计算和人工智能技术的发展。最后,期待大家的热情参与,共同体验这场技术的盛宴,一起成长,一起探索更广阔的科技天地。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2244641.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

11.21 代码随想录Day37打卡(动态规划)

完全背包 题目:小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同…

el-table实现最后一行合计功能并合并指定单元格

效果图如下&#xff1a; 表格代码如下&#xff1a; <el-table width"100%"ref"tableRef" style"margin-bottom: 15px;":data"jlData"class"tableHeader6"header-row-class-name"headerStyleTr6":row-class-n…

【Amazon】亚马逊云科技Amazon DynamoDB 实践Amazon DynamoDB

Amazon DynamoDB 是一种完全托管的 NoSQL 数据库服务&#xff0c;专为高性能和可扩展性设计&#xff0c;特别适合需要快速响应和高吞吐量的应用场景&#xff0c;如移动应用、游戏、物联网和实时分析等。 工作原理 Amazon DynamoDB 在任何规模下响应时间一律达毫秒级&#xff…

基于arduino 用ESP8266获取实时MAX30102 血氧数据动态曲线显示在网页上

基于arduino 用ESP8266获取实时MAX30102 血氧数据动态曲线显示在网页上 原理&#xff1a; ESP8266获取MAX30102 血氧数据&#xff08;R,IR,G的值&#xff09;发送到路由器局域网内&#xff0c;局域网内的手机电脑&#xff0c;访问ESP的ip地址&#xff0c;获取实时的血氧数据动…

PostgreSQL常用时间函数与时间计算提取示例说明

文章目录 常用函数与常量to_timestamp(字符串转时间戳、数字转时间戳)date与to_date(字符串转日期、时间戳转日期)interval(时间计算)基本操作与格式混合运算 to_char(各种时间转字符串)extract(提取时间字段&#xff0c;年月日时分秒&#xff0c;周、季度&#xff0c;第几周、…

【MATLAB源码-第218期】基于matlab的北方苍鹰优化算法(NGO)无人机三维路径规划,输出做短路径图和适应度曲线.

操作环境&#xff1a; MATLAB 2022a 1、算法描述 北方苍鹰优化算法&#xff08;Northern Goshawk Optimization&#xff0c;简称NGO&#xff09;是一种新兴的智能优化算法&#xff0c;灵感来源于北方苍鹰的捕猎行为。北方苍鹰是一种敏捷且高效的猛禽&#xff0c;广泛分布于北…

Android Studio启动模拟器显示超时

问题报错: Timed out after 300seconds waiting for emulator to come online. 解决方案&#xff1a;升级Android Emulator 情况二&#xff1a;Error while waiting for device:AVD Pixel_4a_API_32 is already running. If that is not the case, delete the files at E:\An…

Stable Diffusion经典应用场景

&#x1f33a;系列文章推荐&#x1f33a; 扩散模型系列文章正在持续的更新&#xff0c;更新节奏如下&#xff0c;先更新SD模型讲解&#xff0c;再更新相关的微调方法文章&#xff0c;敬请期待&#xff01;&#xff01;&#xff01;&#xff08;本文及其之前的文章均已更新&…

linux 常用命令指南(存储分区、存储挂载、docker迁移)

前言&#xff1a;由于目前机器存储空间不够&#xff0c;所以‘斥巨资’加了一块2T的机械硬盘&#xff0c;下面是对linux扩容的一系列操作&#xff0c;包含了磁盘空间的创建、删除&#xff1b;存储挂载&#xff1b;docker迁移&#xff1b;anaconda3迁移等。 一、存储分区 1.1 …

AI时代,百度的三大主义

现实主义、长期主义、理想主义。 定焦One&#xff08;dingjiaoone&#xff09;原创 作者 | 苏琦 郑浩钧 编辑 | 魏佳 “人工智能很像是一次新的工业革命&#xff0c;这意味着它不会三五年就结束&#xff0c;也不会一两年就出现‘超级应用’&#xff0c;它更像是三五十年对于整…

服务器Docker OOM RSS高问题排查思路

优质博文&#xff1a;IT-BLOG-CN 防走弯路为防止走弯路&#xff0c;强烈建议先仔细阅读以下加粗内容&#xff1a; 如果你的应用是因为公司最近降成本调小实例物理内存才出现docker oom&#xff0c;而之前从来没有出现过&#xff0c;那么大概率是堆内存太大导致&#xff0c;这种…

Ubuntu Linux使用前准备动作_使用root登录图形化界面

Ubuntu默认是不允许使用 root 登录图形化界面的。这是出于安全考虑的设置。但如果有需要&#xff0c;可以通过以下步骤来实现使用 root 登录&#xff1a; 1、设置 root 密码 打开终端&#xff0c;使用当前的管理员账户登录系统。在终端中输入命令sudo passwd root&#xff0c…

core 不可变类型 线程安全 record

当一个类型的对象在创建时被指定状态后&#xff0c;就不会再变化的对象&#xff0c;我们称之为不可变类型。这种类型是线程安全的&#xff0c;不需要进行线程同步&#xff0c;非常适合并行计算的数据共享。它减少了更新对象会引起各种bug的风险&#xff0c;更为安全。 System.D…

Python-简单病毒程序合集(一)

前言&#xff1a;简单又有趣的Python恶搞代码&#xff0c;往往能给我们枯燥无味的生活带来一点乐趣&#xff0c;激发我们对编程的最原始的热爱。那么话不多说&#xff0c;我们直接开始今天的编程之路。 编程思路&#xff1a;本次我们将会用到os,paltform,threading,ctypes,sys,…

ForEach刷新UI机制

官网地址&#xff1a;ForEach 在ArkUI中&#xff0c;提供了ForEach循环语句&#xff0c;用来初始化一个列表数据&#xff0c;我们知道&#xff0c;当ForEach中的数组发生变化时&#xff0c;会引起UI的刷新&#xff0c;但是究竟如何变化&#xff0c;会引起UI怎样的刷新&#xf…

如何解决pdf.js跨域从url动态加载pdf文档

摘要 当我们想用PDF.js从URL加载文档时&#xff0c;将会因遇到跨域问题而中断&#xff0c;且是因为会触发了PDF.js和浏览器的双重CORS block&#xff0c;这篇文章将会介绍&#xff1a;①如何禁用pdf.js的跨域&#xff1f;②如何绕过浏览器的CORS加载URL文件&#xff1f;②如何使…

Three.js 相机控制器Controls

在 3D 场景中&#xff0c;摄像机的控制尤为重要&#xff0c;因为它决定了用户如何观察和与场景互动。Three.js 提供了多种相机控制器&#xff0c;最常用的有 OrbitControls、TrackballControls、FlyControls 和 FirstPersonControls。OrbitControls 适合用于查看和检查 3D 模型…

C++小白实习日记——Day 5 gitee怎么删文件,测试文件怎么写循环

昨晚一直内耗&#xff0c;一个程序写了三天写不出来&#xff0c;主要是耗时太多了&#xff0c;老板一直不满意。想在VScode上跑一下&#xff0c;昨晚一直报错。今天来公司重新搞了一下&#xff0c; 主要工作有&#xff1a; 1&#xff0c;读取当前时间用tscns 2&#xff0c;输…

【从零开始的LeetCode-算法】3301. 高度互不相同的最大塔高和

给你一个数组 maximumHeight &#xff0c;其中 maximumHeight[i] 表示第 i 座塔可以达到的 最大 高度。 你的任务是给每一座塔分别设置一个高度&#xff0c;使得&#xff1a; 第 i 座塔的高度是一个正整数&#xff0c;且不超过 maximumHeight[i] 。所有塔的高度互不相同。 请…

利用uniapp开发鸿蒙:运行到鸿蒙模拟器—踩坑合集

从uniapp运行到鸿蒙模拟器上这一步&#xff0c;就有非常多的坑&#xff0c;一些常见的坑&#xff0c;官网都有介绍&#xff0c;就不再拿出来了&#xff0c;这里记录一下官网未记录的大坑 1.运行路径从hbuilderx启动鸿蒙模拟器 解决方法&#xff1a; Windows系统&#xff0c;官…