深度学习中的Pixel Shuffle和Pixel Unshuffle:图像超分辨率的秘密武器

news2024/11/17 19:23:10

在深度学习的计算机视觉任务中,提升图像分辨率和压缩特征图是重要需求。Pixel Shuffle和Pixel Unshuffle是在超分辨率、图像生成等任务中常用的操作,能够通过转换空间维度和通道维度来优化图像特征表示。本篇文章将深入介绍这两种操作的原理,并结合PyTorch实现可视化展示,希望能帮助大家更好地理解他们的用途与效果。

为什么需要Pixel Shuffle和Pixel Unshuffle

Pixel Shuffle是一种从特征图中提取空间信息的方法,主要应用于图像超分辨率等任务。超分辨率(Super-Resolution,SR)指的是通过机器学习算法生成比输入分辨率更好的图像。Pixel Shuffle操作可以帮助模型通过减少通道数、扩大空间分辨率来重建出更精细的图像。这不仅有效提升了模型的效果,还在一定程度上降低了计算成本。

相对应地,Pixel Unshuffle是Pixel Shuffle的逆操作,将空间维度重新映射回通道维度,这在特征压缩和编码解码任务中非常有用。

Pixel Shuffle和Pixel Unshuffle的原理解释及代码示例

Pixel Shuffle的工作原理

Pixel Shuffle是一种将通道维度转换为空间维度的操作,用于将特征图从较低的空间分辨率上采样到较高的分辨率。它的基本工作过程如下:

假设输入特征图的维度是 C × H × W C×H×W C×H×W,我们希望将其上采样到更高的空间分辨率 r H × r W rH×rW rH×rW,其中 r r r是放大倍率。Pixel Shuffle的操作步骤如下:

  1. 分解通道数:将特征图通道 C C C分解为 C ′ = C r 2 C'=\frac{C}{r^2} C=r2C,其中 C ′ C' C是新的通道数。
  2. 增加空间维度:将输入特征图的维度从 C × H × W C×H×W C×H×W变为 C ′ × r × r × H × W C'×r×r×H×W C×r×r×H×W,其中 r × r r×r r×r是每个通道中的小块大小。
  3. 重排特征图:将 r × r r×r r×r的小块移动到空间维度上,形成一个大小为 C ′ × r H × r W C'×rH×rW C×rH×rW的特征图。

通过上述过程,Pixel Shuffle可以将特征图的空间分辨率从 H × W H×W H×W放大到 r H × r W rH×rW rH×rW,同时减少通道数。

示例

假设输入特征图的维度是 4 × 2 × 2 4×2×2 4×2×2,我们希望放大2倍,即将分辨率换成 4 × 4 4×4 4×4。Pixel Shuffle操作过程如下:

  • 原始特征图 4 × 2 × 2 4×2×2 4×2×2
  • 分解通道数 4 4 4通道分解为 1 1 1通道的小块,即 1 × 2 × 2 × 2 × 2 1×2×2×2×2 1×2×2×2×2
  • 重排特征图:重排为 1 × 4 × 4 1×4×4 1×4×4的特征图。

这个过程相当于将每个通道中的像素块分配到更大的空间位置,从而实现高效的上采样操作。

代码示例

在PyTorch中,我们可以使用torch.nn.PixelShuffle来实现。以下是一个代码示例,展示如何在PyTorch中应用Pixel Shuffle。

import torch
import torch.nn as nn

# 创建一个示例张量
x = torch.randn(1, 4, 2, 2)  # 输入形状 (batch, channels, height, width)

# Pixel Shuffle 操作,使用上采样因子 2
pixel_shuffle = nn.PixelShuffle(2)
y = pixel_shuffle(x)

print(f"输入形状: {x.shape}, 输出形状: {y.shape}")
# 输入形状: torch.Size([1, 4, 2, 2]), 输出形状: torch.Size([1, 1, 4, 4]) 

在这段代码,我们创建了一个形状为(1,4,2,2)的示例张量,将其通过Pixel Shuffle转换成形状为(1,1,4,4)的张量。这里的(2)是上采样因子,代表输出空间维度扩大2倍,而通道数被缩小为 2 2 2^2 22倍,即将4个通道转换为更大的空间维度,使得高分辨率图像生成称为可能。通过这种方式,网络可以利用更多的控价信息,生成更高质量的图像。

Pixel Unshuffle的工作原理

Pixel Unshuffle 是 Pixel Shuffle 的逆操作,用于将特征图从较高的空间分辨率下采样到较低的分辨率,将空间维度的高频信息重新映射回通道中。这种操作在编码解码模型(将高分辨率图像重新映射回多通道低分辨率特征图)、图像压缩等任务中非常实用。

假设输入特征图的维度是 C ′ × r H × r W C'×rH×rW C×rH×rW,我们希望将其下采样至 C × H × W C×H×W C×H×W的特征图。Pixel Unshuffle 的具体操作步骤如下:

  1. 分解空间维度:将输入特征图的空间维度 r H × r W rH×rW rH×rW 分解为 H × W H×W H×W 和每个位置的小块大小 r × r r×r r×r
  2. 增加通道数:将特征图的维度从 C ′ × r H × r W C'×rH×rW C×rH×rW 变为 C × H × W C×H×W C×H×W,其中 C = C ′ × r 2 C=C'×r^2 C=C×r2,即原始通道数。
  3. 重排通道:将空间维度的 r × r r×r r×r 小块重新映射到通道维度中,从而实现特征的压缩。

通过上述步骤,Pixel Unshuffle 将空间信息压缩回通道中,实现了图像特征的有效下采样。

示例

假设输入特征图的维度是 1 × 4 × 4 1×4×4 1×4×4,希望将其下采样到 4 4 4 通道,尺寸为 2 × 2 2×2 2×2。Pixel Unshuffle 的操作过程如下:

  • 原始特征图 1 × 4 × 4 1×4×4 1×4×4
  • 分解空间维度:将空间维度 4 × 4 4×4 4×4 分解为 2 × 2 2×2 2×2 2 × 2 2×2 2×2的小块
  • 增加通道数:将特征图的维度变为 4 × 2 × 2 4×2×2 4×2×2

这个过程相当于将空间中的信息“压缩”到通道中,从而获得较低分辨率但信息密集的特征图。

代码示例

以下代码展示了如何用Pixel Unshuffle恢复特征图

import torch
import torch.nn.functional as F

# 假设 y (1,1,4,4)是 Pixel Shuffle 的输出
x_reconstructed = F.pixel_unshuffle(y, 2)
print(f"重新构建后的形状: {x_reconstructed.shape}")
# 重新构建后的形状: torch.Size([1, 4, 2, 2])

在这个示例中,pixel_unshuffle将分辨率降回Pixel Shuffle之前的形状,将空间维度信息重映射回通道中,从而实现特征图的压缩。

可视化展示

为了能够更直观地展示Pixel Shuffle的效果,我们可以通过一张实际图片来演示。以下代码将读取一张图片,通过Pixel Shuffle操作后进行对比可视化,方便理解其在上采样中的效果。假设我们读取的图片为
DOG

import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
import matplotlib.pyplot as plt

# 1. 读取图片并预处理
img_path = 'your_image_path.jpg'  # 替换为你的图片路径
image = Image.open(img_path).convert('RGB')

# 2. 图像转换为张量,并调整形状以适应 Pixel Shuffle
transform = transforms.Compose([
    transforms.Resize((8, 8)),  # 调整为较小尺寸以便观察
    transforms.ToTensor()
])

img_tensor = transform(image).unsqueeze(0)  # 增加 batch 维度

# 3. 增加通道以便演示 Pixel Shuffle(例如转为 4 通道)
img_tensor = img_tensor.repeat(1, 4, 1, 1)  # 这里将通道数扩展到4

# 4. 执行 Pixel Shuffle 操作
pixel_shuffle = nn.PixelShuffle(2)
img_shuffled = pixel_shuffle(img_tensor)

# 5. 可视化原图与 Pixel Shuffle 后的图像
fig, axs = plt.subplots(1, 2, figsize=(10, 5))

# 原图
axs[0].imshow(transforms.ToPILImage()(img_tensor.squeeze(0)[:3, :, :]))  # 只取前3个通道
axs[0].set_title("Original")

# Pixel Shuffle 后的图
axs[1].imshow(transforms.ToPILImage()(img_shuffled.squeeze(0)[:3, :, :]))  # 只取前3个通道
axs[1].set_title("Pixel Shuffle")

plt.show()

在这段代码中,我们读取一张图片并将其转换为张量格式,扩展通道数以符合 Pixel Shuffle 的输入要求。通过 Pixel Shuffle 操作,图像的空间分辨率增加,而通道数减少。经过代码处理后的结果为image-20241114093549088

可视化后可以清晰看到,Pixel Shuffle 操作有效地上采样了图片,使其更加细化并且包含更丰富的细节信息。

Pixel Shuffle 与 Pixel Unshuffle 的实际应用

在实际应用中,Pixel Shuffle 常用于超分辨率任务,例如在著名的 EDSR(Enhanced Deep Residual Networks for Single Image Super-Resolution)或 SRGAN(Super-Resolution Generative Adversarial Network)模型中,Pixel Shuffle 是提升图像质量的关键组件之一。Pixel Unshuffle 则适用于特征图压缩和编码场景,帮助模型更高效地处理高维特征。

总结

Pixel Shuffle:用于上采样,将通道维度转换为空间维度,提升图像分辨率。

Pixel Unshuffle:用于下采样,将空间维度转换为通道维度,降低图像分辨率进行特征压缩。

Pixel Shuffle 和 Pixel Unshuffle 通过在通道维度和空间维度之间进行信息重排,使得模型在不引入额外插值误差的情况下,实现高效的上采样和下采样操作。

参考文献

  1. Shi, Wenzhe, et al. “Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016): 1874-1883.
  2. Yu, Jiahui, et al. “Wide Activation for Efficient and Accurate Image Super-Resolution.” arXiv preprint arXiv:1808.08718 (2018).
    (2016): 1874-1883.
  3. Yu, Jiahui, et al. “Wide Activation for Efficient and Accurate Image Super-Resolution.” arXiv preprint arXiv:1808.08718 (2018).
  4. Lim, Bee, et al. “Enhanced Deep Residual Networks for Single Image Super-Resolution.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2017): 136-144.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2242355.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

pom中无法下载下来的类外部引用只给一个jar的时候

比如jar在桌面上放着,操作步骤如下: 选择桌面,输入cmd ,执行mvn install:install-file -DgroupIdcom -DartifactIdaspose-words -Dversion15.8.0 -Dpackagingjar -Dclassifierjdk11 -Dfilejar包名称 即可把jar包引入成功。

群控系统服务端开发模式-应用开发-前端图片格式功能开发

一、添加视图 在根目录下src文件夹下views文件夹下param文件夹下grade文件夹下&#xff0c;新建index.vue&#xff0c;代码如下 <template><div class"app-container"><div class"filter-container" style"float:left;"><…

【Web前端】Promise的使用

Promise是异步编程的核心概念之一。代表一个可能尚未完成的操作&#xff0c;并提供了一种机制来处理该操作最终的成功或失败。具体来说&#xff0c;Promise是由异步函数返回的对象&#xff0c;能够指示该操作当前所处的状态。 当Promise被创建时&#xff0c;它会处于“待定”&a…

EEG+EMG学习系列 (2) :实时 EEG-EMG 人机界面的下肢外骨骼控制系统

[TOC]( EEGEMG学习系列(2):实时 EEG-EMG 人机界面的下肢外骨骼控制系统) 论文地址&#xff1a;https://ieeexplore.ieee.org/abstract/document/9084126 论文题目&#xff1a;Real-Time EEG–EMG Human–Machine Interface-Based Control System for a Lower-Limb Exoskeleton …

Spring Authorization Server OAuth2.1

Spring Authorization Server介绍 Spring Authorization Server 是一个框架&#xff0c;它提供了 OAuth 2.1 和 OpenID Connect 1.0 规范以及其他相关规范的实现。 它建立在 Spring Security 之上&#xff0c;为构建 OpenID Connect 1.0 身份提供者和 OAuth2 授权服务器产品提供…

《生成式 AI》课程 第3講 CODE TASK 任务3:自定义任务的机器人

课程 《生成式 AI》课程 第3講&#xff1a;訓練不了人工智慧嗎&#xff1f;你可以訓練你自己-CSDN博客 我们希望你创建一个定制的服务机器人。 您可以想出任何您希望机器人执行的任务&#xff0c;例如&#xff0c;一个可以解决简单的数学问题的机器人0 一个机器人&#xff0c…

Python知识点精汇!字符串:定义、截取(索引)和其内置函数

目录 一、字符串的定义 二、字符串的截取 1.截取干啥的 2.怎么用截取 3.打印多次 4.两个字符串拼接在一起 三、字符串内置函数 1.查询函数&#xff1a; &#xff08;1&#xff09;find(str,start,end) &#xff08;2&#xff09;index&#xff08;str,start,end&#…

创建vue+electron项目流程

一个vue3和electron最基本的环境搭建步骤如下&#xff1a;// 安装 vite vue3 vite-plugin-vue-setup-extend less normalize.css mitt pinia vue-router npm create vuelatest npm i vite-plugin-vue-setup-extend -D npm i less -D npm i normalize.css -S &#xff0…

从0开始机器学习--Day27--主成分分析方法

主成分分析方法(Principal components analysis) 在降维算法中&#xff0c;比较普遍的是使用主成分分析方法&#xff08;PCA&#xff09; PCA算法简单示例 如图&#xff0c;假设我们有一个二维的特征&#xff0c;想要将其降为一维&#xff0c;简单的方法是寻找一条直线&#…

无效的目标发行版17和无法连接Maven进程问题

起因&#xff1a;我clean了一个模块的Maven想要重新下&#xff0c;他就开始报错。两次了都是这样。如果和我一样一开始都是好好的&#xff0c;直接找Maven的设置&#xff0c;在运行程序改&#xff0c;jre变成了11.它自己变成了我其他的jdk

【Android、IOS、Flutter、鸿蒙、ReactNative 】启动页

Android 设置启动页 自定义 splash.xml 通过themes.xml配置启动页背景图 IOS 设置启动页 LaunchScreen.storyboard 设置为启动页 storyboard页面绘制 Assets.xcassets 目录下导入图片 AppLogo Flutter 设置启动页 Flutter Android 设置启动页 自定义 launch_background.xm…

Java实现多线程编程

目录 一、创建线程 1.1.第一种方法&#xff1a;继承Thread类 1.2.第二种方法&#xff1a;实现Runnable接口 1.3.其他创建线程的方法 二、多线程的优势-增加运行速度 三、Thread类及常见方法 3.1 Thread常见的构造方法 3.2Thread的几个常见方法 3.2.1启动一个线程——sta…

【快速解决】kafka崩了,重启之后,想继续消费,怎么做?

目录 一、怎么寻找我们关心的主题在崩溃之前消费到了哪里&#xff1f; 1、一个问题&#xff1a; 2、查看消费者消费主题__consumer_offsets 3、一个重要前提&#xff1a;消费时要提交offset 二、指定 Offset 消费 假如遇到kafka崩了&#xff0c;你重启kafka之后&#xff0…

【设计模式】行为型模式(四):备忘录模式、中介者模式

《设计模式之行为型模式》系列&#xff0c;共包含以下文章&#xff1a; 行为型模式&#xff08;一&#xff09;&#xff1a;模板方法模式、观察者模式行为型模式&#xff08;二&#xff09;&#xff1a;策略模式、命令模式行为型模式&#xff08;三&#xff09;&#xff1a;责…

GRE做题笔记(零散的个人经验)

locomotive机车By 1813, the Luddite resistance had all but vanished. all but表示“几乎完全”的程度&#xff0c;或者表示排除piston活塞attributed to 归因于how a sportsperson accounted for their own experience of stress 运动员如何解释自己的压力经历 &#xff0c;…

【vmware+ubuntu16.04】vm虚拟机及镜像安装-tools安装包弹不出来问题

学习机器人这门课需要下载虚拟机&#xff0c;做一下记录 首先我下载的是vm虚拟机16&#xff0c; 下载版本可参考该文章课堂上我下载 的镜像是16.04&#xff0c;虚拟机安装教程和镜像添加可参考该博主 按照教程安装成功 安装tools&#xff0c;但是我的弹不出来那个压缩包&…

Redis设计与实现 学习笔记 第十七章 集群

Redis集群是Redis提供的分布式数据库方案&#xff0c;集群通过分片&#xff08;sharding&#xff0c;水平切分&#xff09;来进行数据共享&#xff0c;并提供复制和故障转移功能。 17.1 节点 一个Redis集群通常由多个节点&#xff08;node&#xff09;组成&#xff0c;在刚开…

第03章 文件编程

目标 了解Linux系统文件IO/标准IO基本概念掌握Linux系统文件IO/标准IO常用函数掌握Linux系统文件属性常用函数掌握Linux系统目录文件常用函数 3.1 Linux系统概述 3.1.1 预备知识&#xff08;相关概念&#xff09; &#xff08;1&#xff09;应用程序 和 内核程序 应用程序是…

51c大模型~合集42

我自己的原文哦~ https://blog.51cto.com/whaosoft/11859244 #猎户座 「草莓」即将上线&#xff0c;OpenAI新旗舰大模型曝光&#xff0c;代号「猎户座」 ChatGPT 要进化了&#xff1f; 本月初&#xff0c;OpenAI 创始人、CEO 山姆・奥特曼突然在 X 上发了一张照片&#xff0…

SpringBootTest常见错误解决

1.启动类所在包错误 问题 由于启动类所在包与需要自动注入的类的包不在一个包下&#xff1a; 启动类所在包&#xff1a; com.exmaple.test_02 但是对于需要注入的类却不在com.exmaple.test_02下或者其子包下&#xff0c;就会导致启动类无法扫描到该类&#xff0c;从而无法对…