Python Plotly 库使用教程

news2025/1/3 1:36:23

Python Plotly 库使用教程

引言

数据可视化是数据分析中至关重要的一部分,它能够帮助我们更直观地理解数据、发现潜在的模式和趋势。Python 提供了多种数据可视化库,其中 Plotly 是一个功能强大且灵活的库,支持交互式图表的创建。与静态图表相比,Plotly 的交互性使得数据探索和分析更加直观和便捷。本文将详细介绍 Plotly 的基本用法、常见图表类型、样式定制以及如何与 Pandas 数据框结合使用,帮助你快速掌握 Plotly 的使用技巧。
在这里插入图片描述

1. 安装 Plotly

在开始之前,确保你已经安装了 Plotly。如果没有安装,可以使用以下命令进行安装:

pip install plotly

2. 导入库

在使用 Plotly 之前,我们需要导入必要的库。通常情况下,我们还会使用 Pandas 来处理数据:

import plotly.express as px
import plotly.graph_objects as go
import pandas as pd

3. Plotly 的基本结构

Plotly 提供了两种主要的 API:Plotly Express 和 Plotly Graph Objects。Plotly Express 是一个高层接口,适合快速创建常见图表;而 Plotly Graph Objects 则提供了更大的灵活性,适合创建复杂的图表。

3.1 使用 Plotly Express

Plotly Express 是一个简单易用的接口,适合快速绘制图表。以下是一个使用 Plotly Express 绘制散点图的示例:

# 加载示例数据集
df = px.data.iris()

# 绘制散点图
fig = px.scatter(df, x='sepal_length', y='sepal_width', color='species', title='Iris Sepal Length vs Width')
fig.show()

在这里插入图片描述

3.2 使用 Plotly Graph Objects

如果需要更复杂的图表,可以使用 Plotly Graph Objects。以下是一个使用 Graph Objects 绘制条形图的示例:

# 创建数据
data = [go.Bar(x=['A', 'B', 'C'], y=[10, 20, 15])]

# 创建图形对象
fig = go.Figure(data=data)

# 设置图表标题
fig.update_layout(title='Bar Chart Example')

# 显示图表
fig.show()

在这里插入图片描述

4. 常见图表类型

Plotly 支持多种类型的图表,以下是一些常见图表的示例。

4.1 散点图(Scatter Plot)

散点图用于显示两个变量之间的关系。使用 Plotly Express 可以很方便地创建散点图。

fig = px.scatter(df, x='sepal_length', y='sepal_width', color='species', size='petal_length', hover_data=['petal_width'])
fig.show()

4.2 线图(Line Chart)

线图用于显示数据随时间变化的趋势。以下是一个使用 Plotly Express 绘制线图的示例:

# 创建示例数据
df_line = pd.DataFrame({
    'Year': [2016, 2017, 2018, 2019, 2020],
    'Value': [10, 15, 20, 25, 30]
})

# 绘制线图
fig = px.line(df_line, x='Year', y='Value', title='Line Chart Example')
fig.show()

在这里插入图片描述

4.3 条形图(Bar Chart)

条形图用于比较不同类别的数值。以下是一个使用 Plotly Express 绘制条形图的示例:

fig = px.bar(df, x='species', y='sepal_length', title='Average Sepal Length by Species', 
             color='species', barmode='group')
fig.show()

4.4 饼图(Pie Chart)

饼图用于显示各部分占总体的比例。以下是一个使用 Plotly Express 绘制饼图的示例:

# 创建示例数据
df_pie = pd.DataFrame({
    'Labels': ['A', 'B', 'C'],
    'Values': [10, 20, 30]
})

# 绘制饼图
fig = px.pie(df_pie, values='Values', names='Labels', title='Pie Chart Example')
fig.show()

在这里插入图片描述

4.5 热力图(Heatmap)

热力图用于展示数据的矩阵形式,常用于相关性分析。以下是一个使用 Plotly Express 绘制热力图的示例:

# 计算相关性矩阵
correlation = df.corr()

# 绘制热力图
fig = px.imshow(correlation, title='Correlation Heatmap')
fig.show()

5. 样式定制

Plotly 提供了多种样式和主题,可以帮助我们美化图表。我们可以通过 update_layout() 方法进行定制。

5.1 修改图表标题和轴标签

fig.update_layout(title='Customized Scatter Plot', xaxis_title='Sepal Length', yaxis_title='Sepal Width')

5.2 修改颜色和样式

我们还可以通过 update_traces() 方法修改图表的颜色和样式。例如,改变散点图的大小和颜色:

fig.update_traces(marker=dict(size=10, line=dict(width=2, color='DarkSlateGrey')))

6. 与 Pandas 数据框结合使用

Plotly 与 Pandas 数据框的结合使用使得数据处理和可视化变得更加方便。我们可以直接使用 Pandas 数据框作为 Plotly 的数据源。

示例:使用 Pandas 和 Plotly 绘制图表

下面是一个示例,展示如何使用 Pandas 数据框和 Plotly 绘制图表:

# 创建一个示例数据框
data = {
    'Category': ['A', 'B', 'C', 'A', 'B', 'C'],
    'Values': [10, 20, 15, 25, 30, 35]
}
df = pd.DataFrame(data)

# 使用 Plotly 绘制条形图
fig = px.bar(df, x='Category', y='Values', title='Bar Chart of Values by Category')
fig.show()

7. 进阶用法

7.1 Dash

Dash 是 Plotly 提供的一个用于构建交互式 Web 应用的框架。通过 Dash,我们可以将 Plotly 图表嵌入到 Web 应用中,实现数据的动态交互。

7.2 3D 图表

Plotly 还支持绘制 3D 图表,例如 3D 散点图、3D 表面图等。以下是一个 3D 散点图的示例:

fig = px.scatter_3d(df, x='sepal_length', y='sepal_width', z='petal_length', color='species', title='3D Scatter Plot')
fig.show()

8. 结论

Plotly 是一个强大的数据可视化库,能够帮助我们轻松地创建美观的交互式图表。通过本教程,我们学习了 Plotly 的基本用法、常见图表类型、样式定制以及与 Pandas 数据框的结合使用。希望这些内容能够帮助你在数据分析中更好地利用 Plotly 进行可视化。

参考资料

  • Plotly 官方文档
  • Pandas 官方文档
  • Dash 官方文档

如有任何问题或想法,请在评论区留言!通过不断学习和实践,你将能够更好地掌握 Plotly 的使用技巧,为数据分析增添色彩。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2240224.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

校园交友系统的设计与实现(开源版+三端交付+搭建+售后)

系统基础架构 采用UniApp进行开发,UniApp是一个使用Vue.js开发所有前端应用的框架,它支持编译为H5、小程序、App等多个平台。 使用PHP作为后端开发语言,PHP是一种广泛使用的开源脚本语言,尤其适用于Web开发,并可高效…

SQL 外连接

1 外连接 外连接是一种用于结合两个或多个表的方式,返回至少一个表中的所有记录。 左外连接 LEFT JOIN,左表为驱动表,右表为从表。返回驱动表的所有记录以及从表中的匹配记录。如果从表没有匹配,则结果中从表的部分为NULL。 右…

死磕grass平台

Grass平台:重塑互联网价值与AI数据采集的革新之路 引言:互联网资源的新范式 在当今数字时代,大多数互联网用户面临着一个共同但鲜少被关注的现象:我们付费购买的带宽资源往往没有被充分利用。想象一下,当你订购了100 Mbps的网络服务,在浏览新闻或查看邮件时,实际可…

Spring boot + Vue2小项目基本模板

Spring boot Vue2小项目基本模板 基本介绍基本环境安装项目搭建最终效果展示 基本介绍 项目来源哔哩哔哩的青戈,跟着学习搭建自己的简单vue小项目;看别人的项目总觉得看不懂,需要慢慢打磨 这里目前只简单的搭建了菜单导航和表格页面&#x…

大数据面试题--kafka夺命连环问(后10问)

目录 16、kafka是如何做到高效读写? 17、Kafka集群中数据的存储是按照什么方式存储的? 18、kafka中是如何快速定位到一个offset的。 19、简述kafka中的数据清理策略。 20、消费者组和分区数之间的关系是怎样的? 21、kafka如何知道哪个消…

用vscode编写verilog时,如何有信号定义提示、信号定义跳转(go to definition)、模块跳转这些功能

(一)安装插件SystemVerilog - Language Support 安装一个vscode插件即可,插件叫SystemVerilog - Language Support。虽然说另一个插件“Verilog-HDL/SystemVerilog/Bluespec SystemVerilog”也有信号提示及定义跳转功能,但它只能提…

万字长文解读深度学习——Transformer

🌺历史文章列表🌺 深度学习——优化算法、激活函数、归一化、正则化深度学习——权重初始化、评估指标、梯度消失和梯度爆炸深度学习——前向传播与反向传播、神经网络(前馈神经网络与反馈神经网络)、常见算法概要汇总万字长文解读…

Leecode热题100-35.搜索插入位置

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 示例 1: 输入: nums [1,3,5,6], target 5 输出: 2示例 2: 输入:…

LabVIEW环境监测系统

随着环境问题的日益严重,环境参数的实时监测成为保障公共健康和生态平衡的重要手段。开发了一款基于LabVIEW开发的环境监测系统,能够对大气中的温度、湿度及二氧化硫浓度进行实时监测,并提供数据存储和超阈值报警功能。 系统组成 本系统由下…

7.4、实验四:RIPv2 认证和触发式更新

源文件 一、引言:为什么要认证和采用触发式更新? 1. RIP v2 认证 RIP(Routing Information Protocol)版本 2 添加了认证功能,以提高网络的安全性。认证的作用主要包括以下几点: 防止路由欺骗 RIP v1 是不…

人力资源招聘系统-提升招聘效率与质量的关键工具

在当今这个竞争激烈的商业环境中,企业要想在市场中立于不败之地,关键在于拥有高素质的人才队伍。然而,传统的招聘方式往往效率低下,难以精准匹配企业需求与人才特质,这无疑给企业的发展带来了不小的挑战。 随着科技的飞…

【Linux系统编程】第四十六弹---线程同步与生产消费模型深度解析

✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】【C详解】【Linux系统编程】 目录 1、Linux线程同步 1.1、同步概念与竞态条件 1.2、条件变量 1.2.1、认识条件变量接口 1.2.2、举例子认识条件变量 1.2.3、…

UAV-VisLoc:中国11地大规模无人机视觉定位数据集

2024-05-16,由中科院、北京邮电大学和香港城市大学联合创建了UAV-VisLoc数据集,这个数据集通过收集中国11个不同地点的无人机图像和卫星地图,为无人机在失去全球导航卫星系统(GNSS)信号时提供精确的经纬度坐标定位,具有重要的实际…

el-table 行列文字悬浮超出屏幕宽度不换行的问题

修改前的效果 修改后的效果 ui框架 element-plus 在网上找了很多例子都没找到合适的 然后这个东西鼠标挪走就不显示 控制台也不好调试 看了一下El-table的源码 他这个悬浮文字用的el-prpper 包着的 所以直接改 .el-table .el-propper 设置为max-width:1000px 就可以了 吐槽一…

SystemVerilog学习笔记(十):进程/细粒度进程控制

进程 进程或线程是作为独立实体执行的任何代码片段。fork-join块创建并行运行的不同线程。在下面的图-1中,可以看到进程的类型和进程控制。 序号进程描述1.fork-join只有所有子线程执行完毕时,父线程才会执行。2.fork-join_any只有任何一个子线程执行完…

MySQL技巧之跨服务器数据查询:高级篇-先调用A数据库的MySql存储过程再复制到B数据库的表中

MySQL技巧之跨服务器数据查询:高级篇-先调用A数据库的MySql存储过程再复制到B数据库的表中 基础篇已经描述:借用微软的SQL Server ODBC 即可实现MySQL跨服务器间的数据查询。 而且还介绍了如何获得一个在MS SQL Server 可以连接指定实例的MySQL数据库的…

【数据结构】10.线索二叉树

一、线索二叉树的产生 采用先序、中序、后序三种方法遍历二叉树后都可以得到一个线性序列,序列上的每一个结点(除了第一个和最后一个)都有一个前驱和一个后继,但是,这个线性序列只是逻辑的概念,不是物理结…

springboot食物营养分析平台-计算机毕业设计源码75335

摘要 随着我国经济的发展,人民生活水平的提高,人们的饮食己由温饱型转向营养型。因此,营养问题日益受到重视。食物营养分析平台采用Java技术,Mysql数据库存储数据,基于Springboot框架开发。系统采用了模块化设计方法,根…

使用elementUI实现表格行拖拽改变顺序,无需引入外部库

前言: 使用vue2element UI,且完全使用原生的拖拽事件,无需引入外部库。 如果表格数据量较大,或需要更多复杂功能,可以考虑使用 vuedraggable库,提供更多配置选项和拖拽功能。 思路: 1. 通过el-table的ro…

开源共建 | 长安链开发常见问题及规避

长安链开源社区鼓励社区成员参与社区共建,参与形式包括不限于代码贡献、文章撰写、社区答疑等。腾讯云区块链王燕飞在参与长安链测试工作过程中,深入细致地总结了长安链实际开发应用中的常见问题及其有效的规避方法,相关内容多次解答社区成员…