网络基础 - 网段划分篇

news2025/1/22 19:38:03

我们知道,IP 地址(IPv4 地址)由 “网络标识(网络地址)” 和 “主机标识(主机地址)” 两部分组成,例如 192.168.128.10/24,其中的 “/24” 表示从第 1 位开始到多少位属于网络标识,那么,剩余位就属于主机标识了,但是,究竟从第几位开始到第几位算是网络标识,又是从第几位开始到第几位算是主机标识呢?关于这点,有约定俗称的两种类型,最初二者以分类进行区别,而现在基本以子网掩码(网络前缀)区分,不过,大家请注意,在有些情况下依据部分功能、系统和协议的需求,前一种的方法依然存在

一、IP 地址的分类

1、A 类地址

首位是 “0” ,从第 1 位到第 8 位是它的网络标识,后 24 位是它的主机标识,0.0.0.0 ~ 127.255.255.255

2、B 类地址

前两位是 “10” ,从第 1 位到第 16 位是它的网络标识,后 16 位是它的主机标识,128.0.0.0 ~ 191.255.255.255

3、C 类地址

前三位是 “110” ,从第 1 位到第 24 位是它的网络标识,后 8 位是它的主机标识,192.0.0.0 ~ 223.255.255.255

4、D 类地址

前四位是 “1110” ,从第 1 位到第 32 位是它的网络标识,224.0.0.0 ~ 239.255.255.255

D 类地址没有主机标识,常被用于多播

224.0.0.0 ~ 239.255.255.255 都是多播地址的可用范围,其中的 224.0.0.0 ~ 224.0.0.255 不需要路由控制,在同一个链路内也能实现多播,而在这个范围之外设置多播地址会给全网所有组内成员发送多播的包(可以利用生存时间(TTL,Time To Live)限制包的到达范围),此外,对于多播,所有的主机(路由器以外的主机和终端主机)必须属于 224.0.0.1 的组,所有的路由器必须属于 224.0.0.2 的组,类似地,多播地址中有众多已知的地址,它们中具有代表性的部分已列出,见下
在这里插入图片描述

5、E 类地址

一直未使用

6、特殊地址

  • 主机标识全为0,就成了网络地址,代表这个局域网
  • 主机标识全为 1,就成了广播地址,用于给同一个链路中相互连接的所有主机发送数据包
  • 127.* 的地址用于本都环回(loop back)测试,通常是 127.0.0.1

7、广播地址

7.1、本地广播

在本地网络内的广播,例如网络地址为 192.168.0.0/24 的情况下,广播地址是 192.168.0.255,因为这个广播地址的 IP 包会被路由器屏蔽,所以不会到达 192.168.0.0/24 以外的其他链路上
在这里插入图片描述

7.2、直接广播

在不同网络之间的广播
在这里插入图片描述
由于直接广播有一定的安全问题,多数情况下会在路由器上设置为不转发
在这里插入图片描述

8、多播

在这里插入图片描述
多播可以穿透路由器,还可以将包发送给特定组内的所有主机

二、子网掩码(subnet mask)

随着互联网的覆盖范围逐渐增大,上述划分方案的局限性很快就显现出来了,例如,申请一个 B 类地址,理论上其子网内能允许 65000+ 台主机,A 类地址的子网所能允许的主机数只会更多,然而,在实际网络架构中,不会存在一个子网内有这么多主机的情况,因此大量的 IP 地址都被浪费掉了

针对这种情况提出了新的划分方案,称为无类别域间路由(Classless Inter-Domain Routing, CIDR)

  • 引入一个额外的子网掩码来区分网络号和主机号
  • 子网掩码也是一个 32 位的正整数,它对应 IP 地址网络号部分的位全部为 “1” ,对应 IP 地址主机号部分的位全部为 “0”
  • 将 IP 地址和子网掩码进行 “按位与” 操作,得到的结果就是网络地址
  • 网络号和主机号的划分与这个 IP 地址是 A 类、B 类还是 C 类无关
  • 划分粒度比上述类地址更小
    在这里插入图片描述
    在这里插入图片描述
    通过上例,我们可以看到,子网掩码长度可以不同(26 != 16),这就是可变长子网掩码(Variable Length Subnet Mask, VLSM),在 CIDR 被应用到互联网的初期,网络内部采用固定长度的子网掩码机制,也就是说,当子网掩码的长度被设置为 /25 以后,域内所有的子网掩码都得使用同样的长度,然而,有些部门可能有 500 台主机,另一些部门可能只有 50 台主机,如果全部采用统一标准,就难以架构一个高效的网络结构,为此人们提出组织内要使用可变长度的、高效的 IP 地址分配方式,于是产生了一种可以随机修改组织内各个部门的子网掩码长度的机制 - VLSM,它可以通过域间路由协议转换为 RIP2 以及 OSPF 实现,根据 VLSM 可以将网络地址划分为主机数为 500 个时子网掩码长度为 /23,主机数为 50 个时子网掩码长度为 /26,从而在理论上可以将 IP 地址的利用率提高至 50%

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2239755.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python实战(八)——情感识别(多分类)

一、任务目标 本文使用的是来自Kaggle的一个情感识别数据集,这个数据集的总数据量是5934条,标签为anger、fear、joy三种情感的其中一种,很明显是一个多分类任务。这里,我们将使用微调技巧进行深度学习建模,同时我们会比…

23423234

c语言中的小小白-CSDN博客c语言中的小小白关注算法,c,c语言,贪心算法,链表,mysql,动态规划,后端,线性回归,数据结构,排序算法领域.https://blog.csdn.net/bhbcdxb123?spm1001.2014.3001.5343 给大家分享一句我很喜欢我话: 知不足而奋进,望远山而前行&am…

opencv入门学习总结

opencv学习总结 不多bb,直接上代码!!! 案例一: import cv2 # 返回当前安装的 OpenCV 库的版本信息 并且是字符串格式 print(cv2.getVersionString()) """ 作用:它可以读取不同格式的图像文…

MySQL 中的索引下推功能

看到索引,应该大家都可以联想到这个是和查询效率有关系的,既然有这个功能,那么那句古话说的好啊:存在即合理。那么这个就是说有了这个功能,可以提升查询效率。 什么是索引下推 我们先有一个大概的理解:在…

重拾CSS,前端样式精读-媒体查询

前言 本文收录于CSS系列文章中,欢迎阅读指正 说到媒体查询,大家首先想到的可能是有关响应式的知识点,除此之外,它还可以用于条件加载资源,字体大小,图像和视频的优化,用户界面调整等等方面&am…

物理设备命名规则(Linux网络服务器 15)

Linux系统中的一切都是文件,硬件设备也不例外。既然都是文件,就必须有文件名称。系统内核中udev设备管理器会自动把硬件名称规范化起来,目的是让用户通过设备文件的名字可以大致了解设备属性以及分区信息。这对于陌生的设备来说特别方便。另外…

NVIDIA NIM 开发者指南:入门

NVIDIA NIM 开发者指南:入门 NVIDIA 开发者计划 想要了解有关 NIM 的更多信息?加入 NVIDIA 开发者计划,即可免费访问任何基础设施云、数据中心或个人工作站上最多 16 个 GPU 上的自托管 NVIDIA NIM 和微服务。 加入免费的 NVIDIA 开发者计…

猿创征文|Inscode桌面IDE:打造高效开发新体验

猿创征文|Inscode桌面IDE:打造高效开发新体验 引言 在当今快速发展的软件开发领域,一个高效、易用的集成开发环境(IDE)是每个开发者必不可少的工具。Inscode 桌面 IDE 作为一款新兴的开发工具,凭借其强大…

力扣 LeetCode 142. 环形链表II(Day2:链表)

解题思路&#xff1a; 使用set判断是否重复添加&#xff0c;如果set加入不进去证明之前到达过该节点&#xff0c;有环 public class Solution {public ListNode detectCycle(ListNode head) {Set<ListNode> set new HashSet<>();ListNode cur head;while (cur …

激活函数解析:神经网络背后的“驱动力”

神经网络中的激活函数&#xff08;Activation Function&#xff09;是其运作的核心组件之一&#xff0c;它们决定了神经元如何根据输入信号进行“激活”&#xff0c;进而影响整个模型的表现。理解激活函数的工作原理对于设计和优化神经网络至关重要。本篇博客将深入浅出地介绍各…

基于表格滚动截屏(表格全部展开,没有滚动条)

import html2canvasPro from html2canvas // 截图&#xff0c;平辅表格 async function resetAgSize() {const allColumns gridApi.value.getColumns()let totalColumnWidth 0let totalColumnHeight 0// 遍历每一个行节点gridApi.value.forEachNode((rowNode) > {totalCo…

vs2015QT项目添加多语言翻译总结

一、简介 当软件有国际化的需求时&#xff0c;就需要多语言翻译功能&#xff0c;最常见的语言就是支持中文和英语&#xff0c;本文介绍在vs2015QT环境下&#xff0c;进行国际化翻译的具体流程。 二、多语言翻译实现流程 1.底层实现原理介绍 QT写的客户端软件&#xff0c;能…

wireshark演进之路——从GTK到Qt

Wireshark 自 1998 年诞生至今&#xff0c;已有超过26年的历史了。它最早由 Gerald Combs 创建&#xff0c;最初名为 Ethereal。2006 年&#xff0c;Ethereal 更名为 Wireshark&#xff0c;并继续发展成了全球领先且人尽皆知的网络协议分析工具&#xff0c;其GUI演变就是其中非…

哈希表的实现--C++

文章目录 一、哈希概念1.1、直接定址法1.2、哈希冲突1.3、负载因子1.4、将关键字转为整数1.5、哈希函数1.5.1、除法散列法/除留余数法1.5.2、乘法散列法1.5.3、全域散列法1.5.4、其他方法 二、处理哈希冲突2.1、开放定址法2.1.1、线性探测2.1.2、二次探测2.1.3、双重散列2.1.4、…

Python学习从0到1 day26 第三阶段 Spark ② 数据计算Ⅰ

人总是会执着于失去的&#xff0c;而又不珍惜现在所拥有的 —— 24.11.9 一、map方法 PySpark的数据计算&#xff0c;都是基于RDD对象来进行的&#xff0c;采用依赖进行&#xff0c;RDD对象内置丰富的成员方法&#xff08;算子&#xff09; map算子 功能&#xff1a;map算子…

D67【python 接口自动化学习】- python基础之数据库

day67 Python操作MySQL基础使用 学习日期&#xff1a;20241113 学习目标&#xff1a;MySQL数据库-- 136 Python操作MySQL基础使用 学习笔记&#xff1a; pymysql 创建MySQL的数据库链接 执行sql语句 总结 Python中使用第三方库&#xff1a;pymysql来操作MySQL&#xff0c;…

Linux驱动开发基础——Hello驱动程序(一)

目录 一、Hello驱动 一、Hello驱动 我们选用的内核都是 4.x 版本&#xff0c;操作都是类似的&#xff1a; 1.1、APP 打开的文件在内核中如何表示 open函数原型&#xff1a; int open(const char *pathname, int flags, mode_t mode); 仔细看函数的参数&#xff0c;再对比看 内…

2.初始sui move

vscode安装move插件 查看sui 客户端版本号 sui client --version 创建新项目 sui move new <项目名> sui move new hello_world 项目目录结构&#xff1a; hello_world ├── Move.toml ├── sources │ └── hello_world.move └── tests└── hello_world…

学习日志009--面向对象的编程

一、面向对象 面向对象编程&#xff08;Object-Oriented Programming&#xff0c;简称OOP&#xff09;是一种编程范式&#xff0c;它使用“对象”来设计应用程序和计算机程序。它利用了抽象、封装、继承和多态这些概念。 一、面向对象编程的核心概念 封装&#xff08;Encaps…

Redis8:商户查询缓存2

欢迎来到“雪碧聊技术”CSDN博客&#xff01; 在这里&#xff0c;您将踏入一个专注于Java开发技术的知识殿堂。无论您是Java编程的初学者&#xff0c;还是具有一定经验的开发者&#xff0c;相信我的博客都能为您提供宝贵的学习资源和实用技巧。作为您的技术向导&#xff0c;我将…