自动泊车端到端算法 ParkingE2E 介绍

news2025/1/12 18:14:39

01 算法介绍

自主泊车是智能驾驶领域中的一项关键任务。传统的泊车算法通常使用基于规则的方案来实现。因为算法设计复杂,这些方法在复杂泊车场景中的有效性较低。

相比之下,基于神经网络的方法往往比基于规则的方法更加直观和多功能。通过收集大量专家泊车轨迹数据,基于学习的仿人策略方法,可以有效解决泊车任务。

在本文中,我们采用模仿学习来执行从 RGB 图像到路径规划的端到端规划,模仿人类驾驶轨迹。我们提出的端到端方法利用目标查询编码器来融合图像和目标特征,并使用基于 Transformer 的解码器自回归预测未来的航点。

我们在真实世界场景中进行了广泛的实验,结果表明,我们提出的方法在四个不同的真实车库中平均泊车成功率达到了 87.8%。实车实验进一步验证了本文提出方法的可行性和有效性。

输入:1.去完畸变的 RGB 图 2.目标停车位

输出:路径规划

图片

论文精读博客参考链接:https://blog.csdn.net/qq_45933056/article/details/140968352

源代码:https://github.com/qintonguav/ParkingE2E

02 算法部署后的 demo 效果展示

图片

图片

03 实现过程

3.1 算法整体架构

图片

多视角 RGB 图像被处理,图像特征被转换为 BEV(鸟瞰图)表示形式。使用目标停车位生成 BEV 目标特征,通过目标查询将目标特征和图像 BEV 特征融合,然后使用自回归的 Transformer 解码器逐个获得预测的轨迹点。

3.2 训练过程

注:训练数据集是去完畸变的图像,在数据处理时需要对 4 路鱼眼相机进行标定,获取相机内外参,对鱼眼图进行去畸变,去完畸变的图像会被制作成训练集

获取去完畸变的 RGB 图像和目标停车位做为输入:

(去完畸变的 RGB 图像示例)

图片

目标停车位坐标示例:

{
"x": 83.93134781878057,
"y": -7.080006849257972,
"z": -7.404438257656194,
"yaw": 20.95510451530132
}
  • 使用 EfficientNet 从 RGB 图像中提取特征;
  • 将预测的深度分布 ddep 与图像特征 Fimg 相乘,以获得具有深度信息的图像特征;
  • 将图像特征投影到 BEV 体素网格(特征的大小为 200×200,对应实际空间范围 x∈[−10m, 10m], y∈[−10m, 10m],分辨率为 0.1 米)中,生成相机特征 Fcam。

BEV 视图示例:

图片

  • 使用深度 CNN 神经网络提取目标停车位特征 Ftarget
  • 在 BEV 空间,将相机特征 Fcam 和目标停车位特征 Ftarget 进行融合,获取融合特征 Ffuse
  • 使用 Transformer 解码器以自回归方式预测轨迹点

预测的轨迹序列示例:

[[-0.17014217376708984, -0.010008811950683594], [-0.3298116556863353, -0.011956165423615472], [-0.4854376561367579, -0.02052420170634236], [-0.6337416331734281, -0.03509474854381417], [-0.774850889165686, -0.05409092178920946], [-0.9106318371186677, -0.07662342910150008], [-1.0429499912911764, -0.10220288211346742], [-1.1730293341546085, -0.130403150090076], [-1.3014671109093938, -0.16081194272771432], [-1.4284175031869575, -0.19315076247807056], [-1.5537739117230407, -0.22739195648381574], [-1.6773593831451739, -0.2637573983721455], [-1.7991250198403412, -0.3025803813592571], [-1.9192866870681176, -0.34410827406410627], [-2.0383187092132995, -0.3883681895794497], [-2.1567872059422366, -0.43518302389208097], [-2.275088086162824, -0.4843281463722012], [-2.393198715763861, -0.5357188397161318], [-2.5105481374226417, -0.5894858888356189], [-2.6260817537118184, -0.6458681996255287], [-2.7385546018760474, -0.7049937228225489], [-2.84701611529502, -0.7667346960596122], [-2.9513409844272736, -0.8308041149223722], [-3.0525702187102848, -0.8970783878192974], [-3.1528531887709175, -0.9658913604113011], [-3.25493913830157, -1.0379629359384206], [-3.3612681922638727, -1.1139021444876271], [-3.4725675825974993, -1.193842039192509], [-3.58588491431963, -1.2783030155644421], [-3.69307804107666, -1.3711423873901367]]

实现过程图标表示:

图片

3.3 推理过程

  1. 在 RViz 界面软件中使用“2D-Nav-Goal”来选择目标停车位
目标停车位停车轨迹示例:
position:
x: -6.49
y: -5.82
z: 0.0
orientation:
x: 0.0
y: 0.0
z: 0.0
w: 1.0目标停车位停车轨迹示例:position:x: -6.49y: -5.82z: 0.0orientation:x: 0.0y: 0.0z: 0.0w: 1.0
  1. 获取起始位姿,将以起始点为原点的世界坐标转化为车辆坐标
起始轨迹位姿示例:
position:
x: -0.16161775150943924
y: 0.018056780251669124
z: 0.006380920023400627
orientation:
x: -0.0002508110368611588
y: 0.0008039258947159855
z: 0.010172557118261405
w: 0.9999479035823092
  1. 组合数据输入到 transformer 进行推理,预测轨迹序列
预测的轨迹序列示例:
[[-0.17014217376708984, -0.010008811950683594], [-0.3298116556863353, -0.011956165423615472], [-0.4854376561367579, -0.02052420170634236], [-0.6337416331734281, -0.03509474854381417], [-0.774850889165686, -0.05409092178920946], [-0.9106318371186677, -0.07662342910150008], [-1.0429499912911764, -0.10220288211346742], [-1.1730293341546085, -0.130403150090076], [-1.3014671109093938, -0.16081194272771432], [-1.4284175031869575, -0.19315076247807056], [-1.5537739117230407, -0.22739195648381574], [-1.6773593831451739, -0.2637573983721455], [-1.7991250198403412, -0.3025803813592571], [-1.9192866870681176, -0.34410827406410627], [-2.0383187092132995, -0.3883681895794497], [-2.1567872059422366, -0.43518302389208097], [-2.275088086162824, -0.4843281463722012], [-2.393198715763861, -0.5357188397161318], [-2.5105481374226417, -0.5894858888356189], [-2.6260817537118184, -0.6458681996255287], [-2.7385546018760474, -0.7049937228225489], [-2.84701611529502, -0.7667346960596122], [-2.9513409844272736, -0.8308041149223722], [-3.0525702187102848, -0.8970783878192974], [-3.1528531887709175, -0.9658913604113011], [-3.25493913830157, -1.0379629359384206], [-3.3612681922638727, -1.1139021444876271], [-3.4725675825974993, -1.193842039192509], [-3.58588491431963, -1.2783030155644421], [-3.69307804107666, -1.3711423873901367]]
  1. 将预测的轨迹序列发布到 rviz 进行可视化

图片

04 评估指标

端到端实车评估:在实车实验中,我们使用以下指标来评估端到端停车性能。

图片

关键词解释:

PSR:停车成功率

NSR:无车位率

PVR:停车违规率

APE:平均位置误差

AOE:平均方向误差

APS:平均停车得分

APT:平均停车时间

05 局限性

  1. 由于数据规模和场景多样性的限制,我们的方法对移动目标的适应性较差
  2. 训练过程需要专家轨迹
    .(img-7orUMtby-1731052248424)]

关键词解释:

PSR:停车成功率

NSR:无车位率

PVR:停车违规率

APE:平均位置误差

AOE:平均方向误差

APS:平均停车得分

APT:平均停车时间

05 局限性

  1. 由于数据规模和场景多样性的限制,我们的方法对移动目标的适应性较差
  2. 训练过程需要专家轨迹
  3. 与传统的基于规则的停车方法相比仍有差距

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2236814.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

sealos部署K8s,安装docker时master节点突然NotReady

1、集群正常运行中,在集群master-1上安装了dockerharbor,却发现master-1节点NotReady,使用的网络插件为 Cilium #安装docker和harbor(docker运行正常) rootmaster-1:/etc/apt# apt install docker-ce5:19.03.15~3-0~u…

什么是磁场探针台

探针台主要应用于半导体行业、光电行业、集成电路以及封装的测试。广泛应用于复杂、高速器件的精密电气测量的研发,旨在确保质量及可靠性,并缩减研发时间和器件制造工艺的成本。 磁场探针台就是在普通探针台的基础上,增加了磁性测量环境&…

【八百客CRM-注册安全分析报告-无验证方式导致安全隐患】

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 1. 暴力破解密码,造成用户信息泄露 2. 短信盗刷的安全问题,影响业务及导致用户投诉 3. 带来经济损失,尤其是后付费客户,风险巨大,造…

iOS SmartCodable 替换 HandyJSON 适配记录

前言 HandyJSON群里说建议不要再使用HandyJSON,我最终选择了SmartCodable 来替换,原因如下: 首先按照 SmartCodable 官方教程替换 大概要替换的内容如图: 详细的替换教程请前往:使用SmartCodable 平替 HandyJSON …

✍Qt自定义带图标按钮

✍Qt自定义带图标按钮 📝问题引入 近段时间的工作中,有遇到这样一个需求 📝: 一个按钮,有normal、hover、pressed三种状态的样式,并且normal和hover样式下,字体颜色和按钮图标不一样。 分析…

OpenGL学习笔记(三) 绘制图形

glFrontFace(GL_CCW); // 设置CCW方向为“正面”&#xff0c;CCW即CounterClockWise&#xff0c;逆时针 glFrontFace(GL_CW); // 设置CW方向为“正面”&#xff0c;CW即ClockWise&#xff0c;顺时针#include <GL/glut.h>#include <math.h> void myDisplay(voi…

通过代码复习回忆 DiffusionDet: DiffusionTracker

DiffusionDet : DiffusionTracker复习回顾 之前的一段时间学习了基于扩散模型的检测于跟踪算法&#xff0c;最近在忙别的事情就导致了这里存在了很多和细节上的遗忘在这里进行一定的回顾&#xff0c;之后在试图看看可以进一步学习基于点集的扩散过程吗&#xff1f; Diffusion…

单体架构的 IM 系统设计

先直接抛出业务背景&#xff01; 有一款游戏&#xff0c;日活跃量&#xff08;DAU&#xff09;在两千左右&#xff0c;虽然 DAU 不高&#xff0c;但这两千用户的忠诚度非常高&#xff0c;而且会持续为游戏充值&#xff1b;为了进一步提高用户体验&#xff0c;继续增强用户的忠…

Java-字符串常量池

在Java程序中&#xff0c;类似于&#xff1a;1&#xff0c; 2&#xff0c; 3&#xff0c;3.14&#xff0c;“hello”等字面类型的常量经常频繁使用&#xff0c;为了使程序的运行速度更快、 更节省内存&#xff0c;Java为8种基本数据类型和String类都提供了常量池。 1.为什么要…

Wot Design Uni高颜值、轻量化的uni-app组件库 快速入门

一、简介 Wot Design Uni是一个基于Vue3和TypeScript开发的高颜值、轻量化的uni-app组件库。它提供了超过70个高质量组件&#xff0c;这些组件覆盖了移动端的主流场景&#xff0c;使得开发者能够更加高效地进行移动应用的开发。 以下是Wot Design Uni的一些主要特点&#xff…

maven依赖无法导入爆红问题

1、属于公司内部依赖&#xff0c;当前项目没有连接到公司Maven私服 2、之前本地已经下载过&#xff0c;但是下载中途失败了&#xff0c;产生了一个xxx.jar.lastUpdated文件&#xff0c;此时Maven不会对该依赖再下载 引入本地仓库依赖

MyBatis xml 文件中 SQL 语句的小于号未转义导致报错

问题现象 在 MyBatis 的 xml 文件中添加了一个 SQL 语句 <select id"countXxx" resultType"int">select count(*) from t1 where count < 3 </select>启动 Spring Boot 应用程序后报错&#xff1a; Caused by: org.apache.ibatis.builde…

前端学习之ES6+

1.ES6是什么 ES6&#xff0c;全称是ECMAScript 6&#xff0c;是JavaScript语言的下一代标准&#xff0c;由ECMA国际组织在2015年6月正式发布。ES6也被称作ECMAScript 2015&#xff0c;从这个版本开始&#xff0c;ECMA组织决定每年发布一个新的ECMAScript版本&#xff0c;以使J…

学习笔记:黑马程序员JavaWeb开发教程(2024.11.8)

5.10 分层解耦-分层解耦&#xff08;IOC-DI&#xff09; 在之前写的代码中&#xff0c;Controller层中new了一个Service层中的对象&#xff0c;在Service层中类名改变&#xff0c;则Controller层中也需要变化&#xff0c;这就是两个层之中耦合较重&#xff0c;需要减少耦…

Python常见并行化方法及性能对比

Python代码中通常有三种实现并行化的方法 multiprocessing的同步方法&#xff0c;mapmultiprocessing的异步方法&#xff0c;apply_asyncRay提供的并行或分布式能力 Ray 和 Python 的 multiprocessing 模块都是用于并行和分布式计算的工具&#xff0c;但它们在设计目标、功能…

【软考】系统分析师第二版 新增章节 第20章微服务系统分析与设计

微服务系统是一类基于微服务架构风格的分布式系统&#xff0c;它将应用程序拆分成多个独立的小型服务&#xff0c;每个服务都运行在独立的进程中&#xff0c;并采用轻量级通信协议进行通信。这些服务可以由不同的团队开发、不同的编程语言编写&#xff0c;并且可以按需部署。微…

【WRF理论第七期】WPS预处理

【WRF理论第七期】WPS预处理 运行WPS&#xff08;Running the WPS&#xff09;步骤1&#xff1a;Define model domains with geogrid步骤2&#xff1a;Extracting meteorological fields from GRIB files with ungrib步骤3&#xff1a;Horizontally interpolating meteorologic…

【设计模式】行为型模式(一):模板方法模式、观察者模式

行为型模式&#xff08;一&#xff09;&#xff1a;模板方法模式、观察者模式 1.模板方法模式&#xff08;Template&#xff09;1.1 主要特点1.2 适用场景1.3 示例1.3.1 抽象类定义模板方法1.3.2 子类实现具体步骤1.3.3 客户端1.3.4 结果输出 2.观察者模式&#xff08;Observer…

【ESP32】ESP-IDF开发 | 低功耗管理+RTC唤醒和按键唤醒例程

1. 简介 ESP32支持5种低功耗模式&#xff0c;低功耗管理单元包括调压器、功耗控制器、电源开关单元、电源域隔离单元 (Isolation Cell) 等部分。 1.1 RTC单元 RTC单元是ESP32低功耗管理的核心&#xff0c;可用于管理低功耗模式的进入和退出&#xff0c;控制时钟源、PLL、电源开…

国家电投“电投云”平台,浪潮信息助力其登顶IDC大奖

近日&#xff0c;国际权威咨询机构IDC揭晓了“2024 IDC中国未来企业大奖”优秀奖榜单。国家电力投资集团有限公司倾力打造的“电投云”平台&#xff0c;凭借其卓越的大规模云计算能力、高效的应用迁移设计&#xff0c;成功支撑了集团的产业数字化与管理数字化应用&#xff0c;为…