小语言模型介绍与LLM的比较

news2024/11/6 19:56:39

小模型介绍

小语言模型(SLM)与大语言模型(LLM)相比,具有不同的特点和应用场景。大语言模型通常拥有大量的参数(如 GPT-3 拥有 1750 亿个参数),能够处理复杂的自然语言任务,例如文本生成、对话系统和翻译等。然而,这些模型需要大量的计算资源来训练和运行,因此在实际应用中可能会受到限制。

相比之下,小语言模型则设计得更为紧凑和高效,适用于资源受限的环境或特定任务。例如,它们可以用于语音识别、机器翻译等场景。SLM 在这些领域中表现出色,因为它们不仅消耗较少的计算资源,而且更容易集成到现有的业务系统中。此外,SLM 还可以通过优化的训练方法实现与大型模型相当的性能。

SLM 的一个显著优势是其在边缘设备上的应用潜力,如智能手机和物联网设备,这些设备通常无法有效运行大型模型。SLM 还能够通过创新的训练方法和模型架构设计来提高效率和性能

SLM与LLM比较

小语言模型(SLM)与大语言模型(LLM)在性能上的具体比较涉及多个方面:

计算成本和资源需求:LLM 通常需要大量的计算资源和 GPU 内存来运行,例如一个拥有 1750 亿参数的 LLM 需要 350 GB 的 GPU 内存。相比之下,SLM 由于规模较小,其训练和部署所需的计算资源和电力较少,因此更易于在资源有限的环境中使用。

性能表现:尽管 SLM 在某些任务上可能不如 LLM 表现好,但研究表明,在高质量数据集上经过精心训练的 SLM 可以达到与 LLM 相当甚至更好的性能。例如,微软研究院和卡内基梅隆大学的研究表明,通过微调具有 1.30 亿参数的 SLM,在数学问题上的准确率达到了 81%,优于一些先进的 LLM。此外,慕尼黑 LMU 的研究也展示了 SLM 可以通过模式挖掘训练实现类似 GPT-3 的表现。

任务适应性:SLM 在处理特定任务时可能不如 LLM 灵活,但在一些特定领域或任务中,经过优化的 SLM 可以提供足够的性能。例如,phi-1 模型在 HumanEval 任务上的表现达到了 50%以上,是 sub-10B 参数模型中的佼佼者。

解释性和易用性:SLM 的神经元更容易解释,这使得它们在需要透明度和可解释性的应用场景中更具优势。

提示工程的影响:适当的提示工程可以在某些情况下避免对新数据进行微调的需求,并且对于 LLM 来说,更精确的提示能得到更准确的响应。

优势

小语言模型在特定任务(如语音识别、机器翻译)中的优势主要体现在以下几个方面:

  • 高效性和可定制性
  • 资源消耗低
  • 实时性能
  • 隐私和安全
  • 多语言支持
  • 成本效益

在这里插入图片描述

发展趋势与潜在应用

随着技术的发展,小型语言模型(SLM)在未来的发展趋势和潜在应用领域表现出显著的增长潜力。首先,从发展趋势来看,小型语言模型可能成为 AI 发展的新方向。相较于传统的大型模型,小型语言模型因其高效性和实用性而受到越来越多的关注。例如,苹果公司正在积极研究这一领域,并探索多种技术路径来开发高效的小型语言模型。

在应用领域方面,小型语言模型具有广泛的应用前景。金融行业是其中的一个重要领域,小语言模型正在成为优化运营和有效管理风险的重要工具。此外,在娱乐行业中,小语言模型也在经历一场变革,推动该行业的创新和发展。

医疗保健领域也是小语言模型的重要应用方向之一。由于这些模型通常设计为占用更少的计算资源和内存,因此非常适合用于边缘设备或需要实时性能的应用场景。这使得它们在指导患者、获取专家建议等方面具有重要作用。

此外,小型语言模型还被应用于智能客服系统、智能问答、机器翻译和文本摘要等多个领域。例如,在智能问答系统中,通过针对不同领域的问题训练专用的小语言模型,并结合大语言模型,可以提高系统的准确性和响应速度。

小模型实例

以下是 ollama 框架支持的一些小模型:SmolLM2、phi3.5、nemotron-mini等等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2234485.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

双11花了“一部手机钱”买手机壳的年轻人,究竟在买什么?

【潮汐商业评论/原创】 这个双十一,Elsa在天猫多了一笔新支出——手机壳。和大家都熟悉的“义乌制造”不同的是,她的手机壳支出单件就已经到了500块,加上配套的手机链、支架、卡包、耳机壳,总共1000多元,足够买一部学…

03WIFI与蓝牙1——基于全志V3S的Linux开发板教程笔记

1. Kernel支持 1)配置 终端输入: make menuconfig使能如下部分: 2)编译 保存并退出后编译内核: make licheepi_zero_defconfig make menuconfig #配置内核,有需要的话配置 make -j16 make -j16 modu…

02系统跑起来——基于全志V3S的Linux开发板教程笔记

开发环境:Linux系统为Ubuntu 18.04.6 LTS,如在下面操作中提示部分环境/工具缺失未安装,请单独安装。 硬件基本介绍请参考第一篇文章:基于全志V3S的Linux开发板学习笔记01——简介 1. 环境准备 推荐直接下载完整资源包,…

用户思维,才是银行理财的杀手锏

近些年,伴随着居民理财需求的迸发,银行理财市场规模逐步扩大。 在前不久的2024Inclusion外滩大会上,麦肯锡发布了《银行理财六大趋势》,其中提到在财富管理客户风险偏好普遍下移的大背景下,银行理财将是客户财富管理配…

信息安全工程师(79)网络安全测评概况

一、定义与目的 网络安全测评是指参照一定的标准规范要求,通过一系列的技术、管理方法,获取评估对象的网络安全状况信息,并对其给出相应的网络安全情况综合判定。其对象主要为信息系统的组成要素或信息系统自身。网络安全测评的目的是为了提高…

学习笔记:微服务技术栈(一)服务治理框架SpringCloud

教学视频链接: 【SpringCloudRabbitMQDockerRedis搜索分布式,系统详解springcloud微服务技术栈课程|黑马程序员Java微服务】 目录 前言一、认识微服务1.1 服务架构1.2 微服务架构1.3 SpringCloud 二、服务拆分及远程调用2.1 服务拆分细节2.2 服务间调用 …

医院数字影像信息系统源码,拥有完整知识产权,能够同HIS、电子病历、体检系统无缝对接

数字医学影像系统源码,RIS/PACS系统源码,医院数字影像信息系统源码。 开发技术:基于C/S架构,C#开发语言,数据库服务器采用Oracle数据库。三甲以下的医院都能满足 医学影像系统PACS系统是应用在医院影像科室的系统&…

LabVIEW for Linux 介绍

LabVIEW for Linux 介绍 1. 兼容性 LabVIEW for Linux 设计用于多种 Linux 发行版,包括 CentOS、Ubuntu 等。在安装之前,务必检查与您特定发行版版本的兼容性。 2. 程序移植 可移植性:在许多情况下,LabVIEW 程序(VI…

使用NVM自由切换nodejs版本

一、NVM介绍 在日常开发中,我们可能需要同时进行多个不同NodeJS版本的项目开发,每个项目所依赖的nodejs版本可能不一致,我们如果只安装一个版本的nodejs,就可能出现node版本冲突问题,导致项目无法启动。这种情况下&am…

职场日常:多年的测试工程师如何继续在测试行业中砥砺前行

大家好,今天我们一起聊聊测试工程师在职业、在团队、在家庭中如何更好的做好角色。 作为一个工作了多年测试工作的大牛来说,从今天开始或许未来会因为各个方面的原因可能不在从事软件测试了,但是会继续总结过往的经验,从事这么多…

文件操作:Xml转Excel

1 添加依赖 Spire.Xls.jar <dependency><groupId>e-iceblue</groupId><artifactId>spire.xls</artifactId><version>5.3.3</version></dependency>2 代码使用 package cctd.controller;import com.spire.xls.FileFormat; im…

【Homework】【1--3】Learning resources for DQ Robotics in MATLAB

Learning resources for DQ Robotics in MATLAB Lesson 1 代码 % Step 2: Define the real numbers a1 and a2 a1 123; a2 321;% Step 3: Calculate and display a3 a1 a2 a3 a1 a2; disp([a3 (a1 a2) , num2str(a3)])% Step 4: Calculate and display a3 a1 * a2 a3…

「Mac畅玩鸿蒙与硬件24」UI互动应用篇1 - 灯光控制小项目

本篇将带领你实现一个互动性十足的灯光控制小项目&#xff0c;用户可以通过点击按钮来控制灯光的开关。该项目将涉及状态管理、动态图片加载以及按钮交互&#xff0c;是学习鸿蒙应用开发的重要基础。 关键词 UI互动应用状态管理动态图片加载用户交互 一、功能说明 在这个灯光…

雷池社区版 7.1.0 LTS 发布了

LTS&#xff08;Long Term Support&#xff0c;长期支持版本&#xff09;是软件开发中的一个概念&#xff0c;表示该版本将获得较长时间的支持和更新&#xff0c;通常包含稳定性、性能改进和安全修复&#xff0c;但不包含频繁的新特性更新。 作为最受欢迎的社区waf&#xff0c…

七.numpy模块

NumPy(Numerical Python) 是 Python 语言的一个扩展程序库&#xff0c;支持大量的维度数组与矩阵运算&#xff0c;此外也针对数组运算提供大量的数学函数库。 NumPy 的前身 Numeric 最早是由 Jim Hugunin 与其它协作者共同开发&#xff0c;2005 年&#xff0c;Travis Oliphant…

RK3568平台开发系列讲解(内存篇)Linux 内存优化

🚀返回专栏总目录 文章目录 一、如何正确采集 Linux 内存可用空间二、系统内存优化参考步骤2.1、优化 Linux Kernel module 所占用的内存空间2.3、将 Wi-Fi built-in kernel2.4、优化 Linux 文件系统所占用的内存空间2.5、上层优化2.6、客户定制优化2.6.1、对具体客户的具体产…

Caffeine 手动策略缓存 put() 方法源码解析

BoundedLocalManualCache put() 方法源码解析 先看一下BoundedLocalManualCache的类图 com.github.benmanes.caffeine.cache.BoundedLocalCache中定义的BoundedLocalManualCache静态内部类。 static class BoundedLocalManualCache<K, V> implements LocalManualCache&…

猎板PCB2到10层数的科技进阶与应用解析

1. 单层板&#xff08;Single-sided PCB&#xff09; 定义&#xff1a;单层板是最基本的PCB类型&#xff0c;导线只出现在其中一面&#xff0c;因此被称为单面板。限制&#xff1a;由于只有一面可以布线&#xff0c;设计线路上有许多限制&#xff0c;不适合复杂电路。应用&…

Dinky中配置Flink集群

需要启动yarn-session 进程&#xff0c;在集群服务器 cd /pwd//flink/bin yarn-session -d 启动成功后可以在yarn的资源管理队列进行查看 启动成功后会给出&#xff1a;JobManager Web Interface 在dinky中进行配置&#xff1a; 集群配置 Hadoop 配置&#xff1a; H…

asp.net+uniapp养老助餐管理系统 微信小程序

文章目录 项目介绍具体实现截图技术介绍mvc设计模式小程序框架以及目录结构介绍错误处理和异常处理java类核心代码部分展示详细视频演示源码获取 项目介绍 以往流浪猫狗的救助网站相关信息的管理&#xff0c;都是工作人员手工统计。这种方式不但时效性低&#xff0c;而且需要查…