FPGA视频GTH 8b/10b编解码转PCIE3.0传输,基于XDMA中断架构,提供工程源码和技术支持

news2024/11/25 15:02:23

目录

  • 1、前言
    • 工程概述
    • 免责声明
  • 2、相关方案推荐
    • 我已有的PCIE方案
    • 我已有的 GT 高速接口解决方案
  • 3、PCIE基础知识扫描
  • 4、工程详细设计方案
    • 工程设计原理框图
    • 输入Sensor之-->芯片解码的HDMI
    • 视频数据组包
    • 基于GTH高速接口的视频传输架构
      • GTH IP 简介
      • GTH 基本结构
      • GTH 发送和接收处理流程
      • GTH 的参考时钟
      • GTH 发送接口
      • GTH 接收接口
      • GTH IP核调用和使用
    • 数据对齐
    • 视频数据解包
    • FDMA图像缓存
    • XDMA配置及使用
    • XDMA中断模块
    • 用户中断发起逻辑
    • Windows版本XDMA驱动安装
    • Linux版本XDMA驱动安装
    • QT上位机
    • 工程源码架构
    • Vivado工程注意事项
    • PCIE上板调试注意事项
  • 5、vivado工程源码1详解-->Virtex7-690T版本
  • 6、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 7、上板调试验证
    • 准备工作
    • 视频GTH 8b/10b编解码转PCIE3.0传输效果演示
  • 8、工程代码的获取

FPGA视频GTH 8b/10b编解码转PCIE3.0传输,基于XDMA中断架构,提供工程源码和技术支持

1、前言

FPGA实现SFP光口视频编解码现状;
目前基于Xilinx系列FPGA的SFP光口视频编解码主要有以下几种,Artix7系列的GTP、Kintex7系列的GTX、更高端FPGA器件的GTH、GTY、GTV、GTM等,线速率越来越高,应用场景也越来越高端;编码方式也是多种多样,有8b/10b编解码、64b/66b编解码、HDMI编解码、SDI编解码等等;本设计采用7系列的GTH作为高速接口、8b/10b编解码的方式实现SFP光口视频编解码;

FPGA实现PCIE数据传输现状;
目前基于Xilinx系列FPGA的PCIE通信架构主要有以下2种,一种是简单的、傻瓜式的、易于开发的、对新手友好的XDMA架构,该架构对PCIE协议底层做了封装,并加上了DMA引擎,使得使用的难度大大降低,加之Xilinx提供了配套的Windows和Linux系统驱动和上位机参考源代码,使得XDMA一经推出就让工程师们欲罢不能;另一种是更为底层的、需要设计者有一定PCIE协议知识的、更易于定制化开发的7 Series Integrated Block for PCI Express架构,该IP实现的是PCIe 的物理层、链路层和事务层,提供给用户的是以 AXI4-stream 接口定义的TLP 包,使用该IP 核,需要对PCIe 协议有清楚的理解,特别是对事务包TLP报文格式;本设计采用第一种方案,使用XDMA的中断模式实现PCIE通信;本架构既有简单的测速实验,也有视频采集应用;

工程概述

本设计使用Xilinx系列FPGA为平台,调用Xilinx官方的XDMA方案搭建基中断模式下的PCIE3.0视频传输;输入视频为HDMI视频,用笔记本电脑模拟,笔记本电脑通过HDMI线连接FPGA开发板的HDMI输入接口,板载的silicom9011芯片实现HDMI视频解码,输出RGB888视频给FPGA;然后输入视频送入视频组包模块,将视频的每一行打上包头包尾标记以包的形式输出,以便接收方进行有效识别;让后调用Xilinx官方的GTH IP核实现视频8b/10b编码和数据串化,将并行数据串化为高速串行,线速率设置为5Gbps,编码后的视频通过板载的SFP光口的光纤输出;然后用板载的SFP光口的光纤接收视频,然后送入Xilinx官方的GTX IP核实现视频8b/10b解码和数据解串,将高速串行数据解为并行;然后数据送入数据对齐模块,实现错位数据对齐;然后数据送入视频解包模块,实现每一行的视频包头包尾拆解,并生成对应的场同步信号和数据有效信号输出;然后使用本博主常用的FDMA图像缓存架构对采集视频做图像缓存,缓存介质为板载DDR3;每当缓存一帧视频完毕,就发起一次用户中断给XDMA,XDMA收到用户中断后通知QT上位机发起一次XDMA读数据操作,XDMA再从DDR中读取一帧视频并通过PCIE总线发送给QT上位机,QT上位机接收并显示当前采集的视频;本博客提供1套工程源码,具体如下:

工程源码1

开发板FPGA型号为Xilinx–690T–xc7vx690tffg1761-3;输入视频为HDMI视频,用笔记本电脑模拟,笔记本电脑通过HDMI线连接FPGA开发板的HDMI输入接口,板载的silicom9011芯片实现HDMI视频解码,FPGA使用纯Verilog实现的i2c总线对silicom9011进行初始化配置,分辨率配置为1920x1080@60Hz,输出RGB888视频给FPGA;然后输入视频送入视频组包模块,将视频的每一行打上包头包尾标记以包的形式输出,以便接收方进行有效识别;让后调用Xilinx官方的GTH IP核实现视频8b/10b编码和数据串化,将并行数据串化为高速串行,线速率设置为5Gbps,编码后的视频通过板载的SFP光口的光纤输出;然后用板载的SFP光口的光纤接收视频,然后送入Xilinx官方的GTH IP核实现视频8b/10b解码和数据解串,将高速串行数据解为并行;然后数据送入数据对齐模块,实现错位数据对齐;然后数据送入视频解包模块,实现每一行的视频包头包尾拆解,并生成对应的场同步信号和数据有效信号输出;然后使用本博主常用的FDMA图像缓存架构将视频写入板载DDR3中做4帧缓存;每当缓存一帧视频完毕,就发起一次用户中断操作,用户中断通过中断模块发送给XDMA;XDMA收到用户中断后通知QT上位机发起一次XDMA读数据操作,该过程同样由中断模块转发,XDMA再从DDR3中读取当前一帧视频并通过PCIE总线发送给QT上位机,QT上位机接收并显示当前采集的视频;输出视频分辨率为1920x1080@60Hz;板载PCIE为8 Lane的PCIE3.0;单Lane线速率配置为8GT/s;由此形成Sensor+SFP光口+XDMA+PCIE3.0+QT的高端架构;该工程适用于SFP光口到PCIE3.0接口的数据采集卡应用;

本文详细描述了FPGA视频GTH 8b/10b编解码转PCIE3.0传输的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做项目开发,可应用于医疗、军工等行业的高速接口领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

我已有的PCIE方案

我的主页有PCIE通信专栏,该专栏基于XDMA的轮询模式实现与QT上位机的数据交互,既有基于RIFFA实现的PCIE方案,也有基于XDMA实现的PCIE方案;既有简单的数据交互、测速,也有应用级别的图像采集传输,以下是专栏地址:
点击直接前往
此外,我的主页有中断模式的PCIE通信专栏,该专栏基于XDMA的中断模式实现与QT上位机的数据交互,以下是专栏地址:
点击直接前往
此外,还有基于RIFFA架构的PCIE通信专栏,以下是专栏地址:
点击直接前往

我已有的 GT 高速接口解决方案

我的主页有FPGA GT 高速接口专栏,该专栏有 GTP 、 GTX 、 GTH 、 GTY 等GT 资源的视频传输例程和PCIE传输例程,其中 GTP基于A7系列FPGA开发板搭建,GTX基于K7或者ZYNQ系列FPGA开发板搭建,GTH基于KU或者V7系列FPGA开发板搭建,GTY基于KU+系列FPGA开发板搭建;以下是专栏地址:
点击直接前往

3、PCIE基础知识扫描

PCIe 总线架构与以太网的 OSI 模型类似,是一种分层协议架构,分为事务层(Transaction Layer)、数据链路层(Data Link Layer) 和物理层(Physical Layer)。这些层中的每一层都分为两部分:一部分处理出站(要发送的)信息,另一部分处理入站(接收的)信息,如下图:
在这里插入图片描述
事务层
事务层的主要责任是事务层包 TLP(Transaction Layer Packet)的组装和拆卸。事务层接收来自 PCIe 设备核心层的数据,并将其封装为 TLP。TLP 用于传达事务,例如读取和写入,以及确定事件的类型。事务层还负责管理 TLP 的基于信用的流控制。每个需要响应数据包的请求数据包都作为拆分事务实现。每个数据包都有一个唯一标识符,该标识符使响应数据包可以定向到正确的始发者。数据包格式支持不同形式的寻址,具体取决于事务的类型(内存、I/O、配置和消息)。数据包可能还具有诸如 No Snoop、Relaxed Ordering 和基于 ID 的排序(IDO)之类的属性。事务层支持四个地址空间:包括三个 PCI 地址空间(内存、I/O 和配置)并添加消息空间。该规范使用消息空间来支持所有先前 PCI 的边带信号,例如中断、电源管理请求等,作为带内消息事务。

数据链路层
数据链路层充当事务层和物理层之间的中间阶段。数据链路层的主要职责包括链路管理和数据完整性,包括错误检测和错误纠正。数据链路层的发送方接受事务层组装的 TLP,计算并应用数据保护代码和 TLP序列号,以及将它们提交给物理层以在链路上传输。接收数据链路层负责检查接收到的 TLP 的完整性,并将它们提交给事务层以进行进一步处理。在检测到 TLP 错误时,此层负责请求重发 TLP,直到正确接收信息或确定链路失败为止。数据链路层还生成并使用用于链路管理功能的数据包。为了将这些数据包与事务层(TLP)使用的数据包区分开,当指代在数据链路层生成和使用的数据包时,将使用术语“数据链路层数据包(DLLP)”。

物理层
PCIe 总线的物理层为 PCIe 设备间的数据通信提供传送介质,为数据传送提供可靠的物理环境。物理层包括用于接口操作的所有电路,包括驱动器和输入缓冲器、并行至串行和串行至并行转换、PLL 和阻抗匹配电路。它还包括与接口初始化和维护有关的逻辑功能。物理层以实现特定的格式与数据链路层交换信息。该层负责将从数据链路层接收的信息转换为适当的序列化格式,并以与连接到链路另一端的设备兼容的频率和通道宽度在 PCI Express 链路上传输该信息。物理层是 PCIe 体系结构最重要,也是最难以实现的组成部分(该层对用户透明,开发 PCIe 程序时无需关心)。PCIe 总线的物理层定义了 LTSSM (Link Training and Status State Machine)状态机,PCIe 链路使用该状态机管理链路状态,并进行链路训练、链路恢复和电源管理。PCIe 总线使用端到端的连接方式,在一条PCIe 链路的两端只能各连接一个设备,这两个设备互为数据发送端和数据接收端。由于 PCIe 是支持全双工通信的,所以发送端和接收端中都含有TX (发送逻辑) 和RX (接收逻辑)。在PCIe 总线的物理链路的一个数据通路(Lane) 中,有两组差分信号,共4 根信号线组成。其中发送端的TX 与接收端的RX 使用一组差分信号连接,该链路也被称为发送端的发送链路,也是接收端的接收链路;而发送端的RX 与接收端的TX 使用另一组差分信号连接,该链路也被称为发送端的接收链路,也是接收端的发送链路。一个PCIe 链路可以由多个Lane 组成。目前PCIe 链路可以支持1、2、4、8、12、16 和32 个Lane,即×1、×2、×4、×8、×12、×16 和×32 宽度的PCIe 链路。每一个Lane 上使用的总线频率与PCIe 总线使用的版本相关。

4、工程详细设计方案

工程设计原理框图

工程设计原理框图如下:
在这里插入图片描述

输入Sensor之–>芯片解码的HDMI

输入Sensor是本工程的输入设备,其二为板载的HDMI输入接口;输入源为板载的HDMI输入接口或动态彩条,分辨率为1920x1080@60Hz,使用笔记本电脑接入HDMI输入接口,以模拟输入Sensor;HDMI解码方案为芯片解码,使用Silcom9011,可将输入的HDMI视频解码为RGB888视频;FPGA纯verilog实现的i2c配置模块完成对Silcom9011芯片的配置,分辨率配置为1920x1080@60Hz;可以通过Sensor模块的顶层参数配置,默认选择Sensor输入;Sensor模块如下:
在这里插入图片描述
SENSOR_TYPE=0;则输出HDMI接口采集的视频;
SENSOR_TYPE=1;则输出动态彩条的视频;
整个模块代码架构如下:
在这里插入图片描述

视频数据组包

由于视频需要在GTH 中通过aurora 8b/10b协议收发,所以数据必须进行组包,以适应aurora 8b/10b协议标准;视频数据组包模块代码位置如下:
在这里插入图片描述
首先,我们将16bit的视频存入FIFO中,存满一行时就从FIFO读出送入GTH发送;在此之前,需要对一帧视频进行编号,也叫作指令,GTH组包时根据固定的指令进行数据发送,GTH解包时根据固定的指令恢复视频的场同步信号和视频有效信号;当一帧视频的场同步信号上升沿到来时,发送一帧视频开始指令 0,当一帧视频的场同步信号下降沿到来时,发送一帧视频开始指令 1,视频消隐期间发送无效数据 0 和无效数据 1,当视频有效信号到来时将每一行视频进行编号,先发送一行视频开始指令,在发送当前的视频行号,当一行视频发送完成后再发送一行视频结束指令,一帧视频发送完成后,先发送一帧视频结束指令 0,再发送一帧视频结束指令 1;至此,一帧视频则发送完成,这个模块不太好理解,所以我在代码里进行了详细的中文注释,需要注意的是,为了防止中文注释的乱序显示,请用notepad++编辑器打开代码;指令定义如下:
在这里插入图片描述
注意!!!指令可以任意更改,但最低字节必须为bc;

基于GTH高速接口的视频传输架构

本设计使用GTH 高速接口传输视频,使用8b/10b编解码协议,搭建基于GTH高速接口的视频传输架构,包括视频数据组包模块、GTH IP核配置调用、接收数据对齐模块、视频数据解包模块等部分,总体代码架构如下:
在这里插入图片描述
基于GTH高速接口的视频传输架构顶层接口核参数配置如下:
在这里插入图片描述
本设计共例化了2路GTH,所以2路GTH的收发回环方式也做了灵活的参数化配置,如果你只需要1路GT,则可删除另一路,如果你想例化更多路GT,则可根据上述设计方法扩展,十分方便;

GTH IP 简介

关于GTH 介绍最详细的肯定是Xilinx官方的《ug476_7Series_Transceivers》,我们以此来解读:《ug476_7Series_Transceivers》的PDF文档我已放在了资料包里;我用到的开发板FPGA型号为Xilinx–Virtex7–xc7vx690tffg1761-3;带有36路GTX资源,其中2路连接到了板载2个SFP光口,每通道的收发速度为 500 Mb/s 到 10.3125 Gb/s 之间。GTH 收发器支持不同的串行传输接口或协议,比如8b/10b编解码、PCIE /2.0/3.0 接口、万兆网 XUAI 接口、OC-48、串行 RapidIO 接口、 SATA(Serial ATA) 接口、数字分量串行接口(SDI)等等;

GTH 基本结构

Xilinx 以 Quad 来对串行高速收发器进行分组,四个串行高速收发器和一个 COMMOM(QPLL)组成一个 Quad,每一个串行高速收发器称为一个 Channel(通道),下图为四路 GTH 收发器在Virtex7 FPGA 芯片中的示意图:GTH 与GTX为同一个数据手册,所以下图实为K7的GTX,但GTX核GTH内部构造是一样的;《ug476_7Series_Transceivers》第24页;GTH 具体内部逻辑框图如下所示,它由四个收发器通道 GTXE2_CHANNEL原语 和一个GTXE2_COMMON 原语组成。每路GTXE2_CHANNEL包含发送电路 TX 和接收电路 RX,GTXE2_CHANNEL的时钟可以来自于CPLL或者QPLL,可在IP配置界面里配置;《ug476_7Series_Transceivers》第25页;每个 GTXE2_CHANNEL 的逻辑电路如下图所示:《ug476_7Series_Transceivers》第26页;
在这里插入图片描述
GTXE2_CHANNEL 的发送端和接收端功能是独立的,均由 PMA(Physical Media Attachment,物理媒介适配层)和 PCS(Physical Coding Sublayer,物理编码子层)两个子层组成。其中 PMA 子层包含高速串并转换(Serdes)、预/后加重、接收均衡、时钟发生器及时钟恢复等电路。PCS 子层包含8B/10B 编解码、缓冲区、通道绑定和时钟修正等电路。
这里说多了意义不大,因为没有做过几个大的项目是不会理解这里面的东西的,对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用,后面我也会重点将到IP核的调用和使用;

GTH 发送和接收处理流程

首先用户逻辑数据经过 8B/10B 编码后,进入一个发送缓存区(Phase Adjust FIFO),该缓冲区主要是 PMA 子层和 PCS 子层两个时钟域的时钟隔离,解决两者时钟速率匹配和相位差异的问题,最后经过高速 Serdes 进行并串转换(PISO),有必要的话,可以进行预加重(TX Pre-emphasis)、后加重。值得一提的是,如果在 PCB 设计时不慎将 TXP 和 TXN 差分引脚交叉连接,则可以通过极性控制(Polarity)来弥补这个设计错误。接收端和发送端过程相反,相似点较多,这里就不赘述了,需要注意的是 RX 接收端的弹性缓冲区,其具有时钟纠正和通道绑定功能。这里的每一个功能点都可以写一篇论文甚至是一本书,所以这里只需要知道个概念即可,在具体的项目中回具体用到,还是那句话:对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用。

GTH 的参考时钟

GTH 模块有两个差分参考时钟输入管脚(MGTREFCLK0P/N 和 MGTREFCLK1P/N),作为 GTH 模块的参考时钟源,用户可以自行选择。一般开发板上都有一路125或者156.25Mhz 的 GTH 参考时钟连接到 MGTREFCLK0上,作为 GTH 的参考时钟。差分参考时钟通过IBUFDS 模块转换成单端时钟信号进入到 GTXE2_COMMOM 的QPLL或CPLL中,产生 TX 和 RX 电路中所需的时钟频率。TX 和 RX 收发器速度相同的话,TX 电路和 RX 电路可以使用同一个 PLL 产生的时钟,如果 TX 和 RX收发器速度不相同的话,需要使用不同的 PLL 时钟产生的时钟。参考时钟这里Xilinx给出的GT参考例程已经做得很好了,我们调用时其实不用修改;GTH 的参考时钟结构图如下:《ug476_7Series_Transceivers》第31页;
在这里插入图片描述

GTH 发送接口

《ug476_7Series_Transceivers》的第107到165页详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTH 例化时留给用户的发送部分需要用到的接口;用户只需要关心发送接口的时钟和数据即可,以例化2路GTH 为例,经本博主优化,用户只需要关心如下GTH 发送接口即可快速使用GTH ;
在这里插入图片描述

GTH 接收接口

《ug476_7Series_Transceivers》的第167到295页详细介绍了接收处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTH 例化时留给用户的发送部分需要用到的接口;用户只需要关心接收接口的时钟和数据即可,以例化2路GTH 为例,经本博主优化,用户只需要关心如下GTH 接收接口即可快速使用GTH ;
在这里插入图片描述

GTH IP核调用和使用

GTH IP核配置调用在工程种位置如下:
在这里插入图片描述
GTH IP核调用和使用很简单,通过vivado的UI界面即可完成,如下:
在这里插入图片描述
有别于网上其他博主的教程,我个人喜欢用如下图的共享逻辑:
在这里插入图片描述
这样选择的好处有两个,一是方便DRP变速,二是便于IP核的修改,修改完IP核后直接编译即可,不再需要打开example工程,再复制下面的一堆文件放到自己的工程什么的,玩儿个GTH需要那么复杂么?
在这里插入图片描述
这里对上图的标号做解释:
1:线速率,根据自己的项目需求来,GTH的范围是0.5到13.1G,由于我的项目是视频传输,所以在GTH的速率范围内均可,本例程选择了5G;
2:参考时钟,这个得根据你的原理图来,可以是80M、125M、148.5M、156.25M等等,我的开发板是156.25M;
4:GTH组的绑定,这个很重要,他的绑定参考依据有两个,已是你的开发板原理图,而是官方的参考资料《ug476_7Series_Transceivers》,官方根据BANK不同将GTH资源分成了多组,由于GT资源是Xilinx系列FPGA的专用资源,占用专用的Bnak,所以引脚也是专用的,那么这些GTH组和引脚是怎么对应的呢?《ug476_7Series_Transceivers》的说明如下:红框内为的我的开发板原理图对应的FPGA引脚;
在这里插入图片描述
我的板子原理图如下:
在这里插入图片描述
在这里插入图片描述
选择外部数据位宽32bit的8b/10b编解码,如下:
在这里插入图片描述
下面这里讲的是K码检测:
在这里插入图片描述
这里选择K28.5,也就是所谓的COM码,十六进制为bc,他的作用很多,可以表示空闲乱序符号,也可以表示数据错位标志,这里用来标志数据错位,8b/10b协议对K码的定义如下:
在这里插入图片描述
下面讲的是时钟矫正,也就是对应GTH内部接收部分的弹性buffer;
在这里插入图片描述
这里有一个时钟频偏的概念,特别是收发双方时钟不同源时,这里设置的频偏为100ppm,规定每隔5000个数据包发送方发送一个4字节的序列,接收方的弹性buffer会根据这4字节的序列,以及数据在buffer中的位置来决定删除或者插入一个4字节的序列中的一个字节,目的是确保数据从发送端到接收端的稳定性,消除时钟频偏的影响;

数据对齐

由于GT资源的aurora 8b/10b数据收发天然有着数据错位的情况,所以需要对接受到的解码数据进行数据对齐处理,数据对齐模块代码位置如下:
在这里插入图片描述
我定义的 K 码控制字符格式为:XX_XX_XX_BC,所以用一个rx_ctrl 指示数据是否为 K 码 的 COM 符号;
rx_ctrl = 4’b0000 表示 4 字节的数据没有 COM 码;
rx_ctrl = 4’b0001 表示 4 字节的数据中[ 7: 0] 为 COM 码;
rx_ctrl = 4’b0010 表示 4 字节的数据中[15: 8] 为 COM 码;
rx_ctrl = 4’b0100 表示 4 字节的数据中[23:16] 为 COM 码;
rx_ctrl = 4’b1000 表示 4 字节的数据中[31:24] 为 COM 码;
基于此,当接收到有K码时就对数据进行对齐处理,也就是将数据打一拍,和新进来的数据进行错位组合,这是FPGA的基础操作,这里不再赘述;数据对齐模块顶层接口如下:
在这里插入图片描述

视频数据解包

数据解包是数据组包的逆过程,代码位置如下:
在这里插入图片描述
GTH 解包时根据固定的指令恢复视频的场同步信号和视频有效信号;这些信号是作为后面图像缓存的重要信号;由于数据解包是数据组包的逆过程,所以这里不再过多赘述,视频数据解包模块顶层接口如下:
在这里插入图片描述

FDMA图像缓存

FDMA图像缓存架构实现的功能是将输入视频缓存到板载DDR3中,由于调用了Xilinx官方的MIG作为DDR控制器,所以FDMA图像缓存架构就是实现用户数据到MIG的桥接作用;架构如下:
在这里插入图片描述
FDMA图像缓存架构由FDMA控制器+FDMA组成;FDMA实际上就是一个AXI4-FULL总线主设备,与MIG对接,MIG配置为AXI4-FULL接口;FDMA控制器实际上就是一个视频读写逻辑,以写视频为例,假设一帧图像的大小为M×N,其中M代表图像宽度,N代表图像高度;FDMA控制器每次写入一行视频数据,即每次向DDR3中写入M个像素,写N次即可完成1帧图像的缓存,本设计只用到了FDMA控制器的写功能,FDMA控制器IP配置如下:
在这里插入图片描述
FDMA图像缓存架构在Block Design中如下:
在这里插入图片描述

XDMA配置及使用

根据Xilinx官方手册,XDMA框图如下:
在这里插入图片描述
由图可知,XDMA封装了Integrated Block for PCI Express IP,不仅完成了事务层的组包解包,还添加了完整的 DMA 引擎;
XDMA 一般情况下使用AXI4 接口,AXI4 接口可以加入到系统总线互联,适用于大数据量异步传输,而且通常情况下使用 XDMA 都会使用到 BRAM 或 DDR 内存;AXI4-Stream 接口适用于低延迟数据流传输。XDMA 允许在主机内存和 DMA 子系统之间移动数据。它通过对包含有关要传输的数据的源、目标和数量的信息的“描述符”进行操作来实现此目的。这些直接内存传输既可以用于主机到卡(Host to Card,H2C)的传输,也可以用与卡到主机(Card to Host,C2H)的传输。可以将 DMA 配置为由所有通道共享一个 AXI4 Master 接口,或者为每个启用的通道提供一个 AXI4-Stream 接口。内存传输是基于每个通道的描述符链接列表指定的,DMA 从主机内存和进程中获取这些链接列表。诸如描述符完成和错误之类的事件通过中断来发出信号。XDMA 还提供多达 16 条用户中断线,这些中断线会向主机生成中断。本设计需要配置为中断模式;如下图:
在这里插入图片描述
本设计XDMA线速率配置为8GT/s,这是PCIE3.0标准,如下:
在这里插入图片描述
XDMA详情参考《AXI Bridge for PCI Express Gen3 Subsystem Product Guide(PG194)》;XDMA在Block Design中如下:
在这里插入图片描述

XDMA中断模块

XDMA中断模块和XDMA IP配合使用,XDMA中断模块主要执行两个任务,一是获取XDMA的状态,输出用户中断使能信号,以指示用户此时可以发起中断,该任务通过AXI_Lite接口与XDMA连接,其从机地址受PC端软件控制;二是转发用户中断给XDMA,当用户侧检测到XDMA处于可接受中断状态时,用户逻辑可以发起中断,XDMA中断模块将此中断转发给XDMA IP;将模块直接拖入Block Design中,显示如下:
在这里插入图片描述

用户中断发起逻辑

每当FDMA缓存一帧视频完毕,就通知用户中断发起逻辑发起一次用户中断操作,中断号几位当前缓存视频帧的帧号;用户中断通过中断模块发送给XDMA;XDMA收到用户中断后通知QT上位机发起一次XDMA读数据操作,该过程同样由中断模块转发,XDMA再从DDR3中读取当前一帧视频并通过PCIE总线发送给QT上位机,QT上位机接收并显示当前采集的视频;核心代码如下:
在这里插入图片描述

Windows版本XDMA驱动安装

提供Windows和Linux系统驱动,本章节介绍Windows下XDMA驱动安装;
在这里插入图片描述
Windows下驱动安装步骤如下:友情提示,Windows下驱动秩序安装一次即可;

第一步:使系统禁用签名并进入测试模式,方法如下:
在这里插入图片描述
也可百度其他方法实现上述目的,完成后电脑屏幕右下角应有如下显示:
在这里插入图片描述
第二步:定位到驱动目录下,提供Windows7和Windows10两个版本驱动,由于我的电脑选择Windows10,如下:
在这里插入图片描述
单击鼠标右键安装即可,如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
第三步:下载FPGA工程bit到FPGA开发板,然后重启电脑,打开我的电脑–>管理–>设备管理器,应看到如下设备:
在这里插入图片描述

Linux版本XDMA驱动安装

提供Windows和Linux系统驱动,本章节介绍Linux下XDMA驱动安装;
在这里插入图片描述
Linux下驱动安装步骤如下:友情提示,Linux下,每次下载FPGA bit后都需要重启电脑才能安装驱动;

进入到Linux驱动目录下,一次执行以下两条指令即可安装,如下:
• 驱动编译终端指令:make -j8
•驱动安装终端指令:sudo insmod xdma.ko
在这里插入图片描述

QT上位机

提供Linux和Win10版本的QT上位机,位置如下:
在这里插入图片描述
以Win10版本为例,源码位置如下:
在这里插入图片描述
以Win10版本下,可以点击已经编译好的QT软件直接运行,位置如下:
在这里插入图片描述
Linux下必须先安装QT软件,然后打开QT工程才能运行,如下:
在这里插入图片描述
QT上位机运行效果如下:
在这里插入图片描述

工程源码架构

工程Block Design设计如下:
在这里插入图片描述
工程综合后的工程源码架构如下:
在这里插入图片描述

Vivado工程注意事项

Vivado工程需要配合修改过的Xilinx官方XDMA驱动和QT上位机一起使用,所以Vivado工程必须做到以下几点:
1:XDMA中的AXI4_Lite基地址必须设为0x44A00000,这是XDMA驱动修改的规定,感兴趣的可以去看驱动源码,配置如下;
在这里插入图片描述
2:MIG的DDR基地址必须从0x00000000开始,这是QT上位机代码的规定,感兴趣的可以去看QT源码,配置如下;
在这里插入图片描述

PCIE上板调试注意事项

1:必须先安装本博提供的XDMA驱动,详情请参考第4章节的《XDMA驱动及其安装》,Windows版本驱动只需安装一次;
2:Windows版本下载FPGA工程bit后需要重启电脑,电脑才能识别到XDMA驱动;程序固化后也需要重启电脑;Linux版本每次载FPGA工程bit后都需要重启电脑,都需要安装XDMA驱动;
3:FPGA板卡插在主机上后一般不需要额外供电,如果你的板子元器件较多功耗较大,则需要额外供电,详情咨询开发板厂家,当然,找我买板子的客户可以直接问我;
4:PCIE调试需要电脑主机,但笔记本电脑理论上也可以外接出来PCIE,详情百度自行搜索一下,电脑主机PCIE插槽不方便操作时可以使用延长线接出来,某宝有卖;

5、vivado工程源码1详解–>Virtex7-690T版本

开发板FPGA型号:Xilinx–690T–xc7vx690tffg1761-3;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
输入:HDMI或动态彩条,Silcom9011芯片解码方案,分辨率1920x1080@60Hz,笔记本电脑模拟输入源;
输出:PCIE3.0,分辨率1920x1080@60Hz;
高速接口类型:GTH,线速率5Gbps;
GTH编解码类型:8b/10b编解码;
回环光口类型:SFP光口;
图像缓存方案:FDMA图像缓存+DDR3颗粒+图像4帧缓存;
PCIE底层方案:Xilinx XDMA,8GT/s单lane线速率;
PCIE详情:PCIE3.0版本,X8,8GT/s单lane线速率;
实现功能:FPGA视频GTH 8b/10b编解码转PCIE3.0传输;
工程作用:此工程目的是让读者掌握FPGA视频GTH 8b/10b编解码转PCIE3.0传输的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第4章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

6、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

7、上板调试验证

准备工作

需要准备的器材如下:
OV5640摄像头或者笔记本电脑,没有则请使用FPGA内部生成的彩条;
FPGA开发板,没有开发板可以找本博提供;
SFP光口和光纤;
带PCIE卡槽的电脑主机;
我的开发板了连接如下:
在这里插入图片描述

视频GTH 8b/10b编解码转PCIE3.0传输效果演示

视频GTH 8b/10b编解码转PCIE3.0传输效果演示如下:

HDMI-XDMA

8、工程代码的获取

代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:文章末尾名片。
网盘资料如下:
在这里插入图片描述
此外,有很多朋友给本博主提了很多意见和建议,希望能丰富服务内容和选项,因为不同朋友的需求不一样,所以本博主还提供以下服务:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2234160.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CSS中常见的两列布局、三列布局、百分比和多行多列布局!

目录 一、两列布局 1、前言: 2. 两列布局的常见用法 两列布局的元素示例: 代码运行后如下: 二、三列布局 1.前言 2. 三列布局的常见用法 三列布局的元素示例: 代码运行后如下: 三、多行多列 1.前言 2&…

jmeter结合ansible分布式压测--1数据准备

一、搭建ansible环境 ansible是基于python开发,通过ssh连接客户机执行任务。ansible可以批量系统配置、批量程序部署、批量运行命令等。 1、安装yum install ansible 2、检查ansible的版本:ansible --version 二、利用ansible在其他机器上准备压测数据 1、本地准…

蓬勃发展:移动开发——关于软件开发你需要知道些什么

一、前言 移动开发一直都是软件开发领域中最有趣的领域之一,这是因为: 1、移动开发为“只有一个人”的开发团队提供了一个非常独特的机会,让他可以在相对较短的时间内建立一个实际的、可用的、有意义的应用程序; 2、移动开发也代…

gitmakegdb

git git reset 命令 | 菜鸟教程 (runoob.com) 像嫁接一样 make Makefile | 爱编程的大丙 (subingwen.cn) # 举例: 有源文件 a.c b.c c.c head.h, 需要生成可执行程序 app ################# 例1 ################# app:a.c b.c c.cgcc a.c b.c c.c -o app################# 例…

网络安全认证的证书有哪些?

在网络安全领域,专业认证不仅是个人技术能力的象征,也是职业发展的重要推动力。随着网络安全威胁的日益严峻,对网络安全专业人才的需求也在不断增长。本文将介绍一些网络安全认证的证书,帮助有志于从事网络安全行业的人士了解并选…

初阶数据结构的各种排序方法——冒泡,直接插入,希尔,快排,选择,归并(C语言)

1.交换排序 交换排序基本思想: 所谓交换,就是根据序列中两个记录键值的⽐较结果来对换这两个记录在序列中的位置 交换排序的特点是:将键值较⼤的记录向序列的尾部移动,键值较⼩的记录向序列的前部移动。 1.1冒泡排序 例子&…

qt QFileInfo详解

1、概述 QFileInfo是Qt框架中用于获取文件信息的工具类。它提供了与操作系统无关的文件属性,如文件的名称、位置(路径)、访问权限、类型(是否为目录或符号链接)等。此外,QFileInfo还可以获取文件的大小、创…

Charles抓包_Android

1.下载地址 2.破解方法 3.安卓调试办法 查看官方文档,Android N之后抓包要声明App可用User目录下的CA证书 3.1.在Proxy下进行以下设置(路径Proxy->Proxy Settings) 3.1.1.不抓包Windows,即不勾选此项,免得打输出不…

软件压力测试有多重要?北京软件测试公司有哪些?

软件压力测试是一种基本的质量保证行为,它是每个重要软件测试工作的一部分。压力测试是给软件不断加压,强制其在极限的情况下运行,观察它可以运行到何种程度,从而发现性能缺陷。 在数字化时代,用户对软件性能的要求越…

【Python】【数据可视化】【商务智能方法与应用】课程 作业一 飞桨AI Studio

作业说明 程序运行和题目图形相同可得90分,图形显示有所变化,美观清晰可适当加分。 import matplotlib.pyplot as plt import numpy as npx np.linspace(0, 1, 100) y1 x**2 y2 x**4plt.figure(figsize(8, 6))# yx^2 plt.plot(x, y1, -., labelyx^2,…

进程的调度(超详细解读)

在特别老的操作系统中,进程的调度是根据FIFO调度算法进行调度,先进先出式的调度,其实就是队列,但是不能很好的体现进程的优先级,在上节讲解的进程优先级,知道nice值范围是[-20,19],然…

【初阶数据结构篇】链式结构二叉树(续)

文章目录 须知 💬 欢迎讨论:如果你在学习过程中有任何问题或想法,欢迎在评论区留言,我们一起交流学习。你的支持是我继续创作的动力! 👍 点赞、收藏与分享:觉得这篇文章对你有帮助吗&#xff1…

【拥抱AI】如何让软件开发在保证数据安全的同时更加智能与高效?

第一、推动软件开发向更加智能化、高效化和创新化方向发展的策略 随着AI技术的不断进步,软件开发正朝着更加智能化、高效化和创新化的方向发展。要实现这一目标,企业需要采取一系列综合性的策略,从技术、管理、文化等多个层面入手。以下是一…

elementUI 点击弹出时间 date-picker

elementUI的日期组件,有完整的UI样式及弹窗,但是我的页面不要它的UI样式,点击的时候却要弹出类似的日期选择器,那怎么办呢? 以下是elementUI自带的UI风格,一定要一个输入框来触发。 这是我的项目中要用到的…

柯桥topik考级韩语培训【韩语干货】表存在的에和에게有什么区别?

相同点 都可以接在体词后,表示存在的地点、场所,以及所有者。 例如: 1)여동생이 집에 있어요. 妹妹在家。 2) 식당이 도서관 뒤에 있다. 食堂在图书馆后面。 3) 언니에게 고급 화장품이 있다. 姐姐有高级…

使用 ABAP GIT 发生 IF_APACK_MANIFEST dump

错误重现 使用经典的 ABAP 系统运行 ZABAPGIT 或者 ZABAPGIT_STANDALONE然后添加在线或者离线项目点击 PullShort dump SYNTAX_ERROR Dump 界面: 解决方案 它发生在 CREATE OBJECT lo_manifest_provider TYPE (ls_manifest_implementation-clsname) 语句中。 该语…

多商户电商平台开发指南:基于直播带货系统源码的搭建方案详解

本篇文章,小编将详细解析如何利用直播带货系统源码,快速搭建一套多商户电商平台的解决方案。 一、直播带货系统在多商户电商平台中的应用价值 在多商户电商平台中,直播带货系统可以帮助商家: 1.增加用户互动 2.提升转化率 3.…

【TextIn:开源免费的AI智能文字识别产品(通用文档智能解析识别、OCR识别、文档格式转换、篡改检测、证件识别等)】

TextIn:开源免费的AI智能文字识别产品(通用文档智能解析识别、OCR识别、文档格式转换、篡改检测、证件识别等) 产品的官网:TextIn官网 希望感兴趣以及有需求的小伙伴们多多了解,因为这篇文章也是源于管网介绍才产出的…

(C++回溯算法)微信小程序“开局托儿所”游戏

问题描述 给定一个矩阵 A ( a i j ) m n \bm A(a_{ij})_{m\times n} A(aij​)mn​,其中 a i j ∈ { 1 , 2 , ⋯ , 9 } a_{ij}\in\{1,2,\cdots,9\} aij​∈{1,2,⋯,9},且满足 ∑ i 1 m ∑ j 1 n a i j \sum\limits_{i1}^m\sum\limits_{j1}^na_{ij} i…

Java学习Day57:碧水金睛兽!(Spring Cloud微服务1.0)

1.微服务入门 (1).单体架构与分布式架构 单体架构: 将业务的所有功能集中在一个项目中开发,打成一个包部署优点: 架构简单、部署成本低 ; 缺点: 耦合度高项目打包部署到Tomcat,用户直接访问。用户量增加后…