使用 pytorch 运行预训练模型的框架

news2024/11/5 0:29:12

PyTorch 简介:

PyTorch 是一个 Python 程序库,我们可以使用 PyTorch 来构建深度学习项目。

PyTorch 的两个特点:

  1. PyTorch 的核心数据结构是张量,张量是一个多维数组,与 NumPy 数组有许多相似之处。
  2. PyTorch 提供了在专用硬件上执行加速数学操作的特性,这使得神经网络结构设计以及在单机或并行计算资源上训练它们变得很方便。

因此,我们可以将 PyTorch 描述为一个在 Python 中为科学计算提供优化支持的高性能库。

PyTorch 大部分是用 C++ 和 CUDA 编写的,CUDA 是一种来自英伟达的类 C++的语言,可以被编译并在 GPU 上以并行方式运行。


使用 pytorch 运行预训练模型的框架

import torch
  1. 定义模型类 1.1 自定义模型类 1.2 从 torchvision 模块加载模型: from torchvision import models

  1. 实例化模型类
resnet101 = models.resnet101() 

  1. 给实例化的模型类加载预训练好的参数 3.1 实例化模型类和加载预训练好的权重同时进行(这种情况可以省略第 2 步)
resnet101 = models.resnet101(pretrained=True)  # pretrained=True 指示函数下载 resnet101 在 ImageNet数据集上训练好的权重

3.2 使用模型的 load_state_dict() 方法将预训练权重加载到 resnet101 中

model_path = '......'
model_data = torch.load(model_path)
resnet101.load_state_dict(model_data)

3.3 使用 torch.hub 从 github 加载模型(这种情况可以省略第 1、2 步)

from torch import hub
resnet101 = hub.load('pytorch/vision:main''resnet101', pretrained=True)  # 第一项是 GitHub 存储库的名称和分支,第二项是入口点函数的名称

以上代码将 pytorch/vision 主分支的快照及其权重默认下载到本地的 C:\Users\username.cache\torch\hub 目录下,然后运行 resnet101 入口点函数返回实例化的模型,参数 pretrained=true 会从 ImageNet 获得预训练权重,并加载到 resnet101 中。


  1. 使用 Python 图像操作模块 Pillow 从本地文件系统加载一幅图像
from PIL import Image  # PIL 指的是 pillow
img = Image.open(".../xxx.jpg")

  1. 使用 TorchVision 模块提供的 transforms 定义一个对输入图像进行预处理的管道
from torchvision import transforms
preprocess = transforms.Compose([transforms.Resize(256),  # 将输入图像缩放到 256× 256 个像素
                                 transforms.ToTensor(),  # 转换为一个张量
                                ])

  1. 使用预处理管道 preprocess 对图像 img 进行预处理
img_t = preprocess(img)

  1. 给数据添加一个新的维度:批次维度
batch_t = torch.unsqueeze(img_t, 0)

  1. 进行推理时,我们需要将神经网络置于 eval 模式
resnet.eval()

  1. eval 模式设置好之后,进行推理
out = resnet101(batch_t)
out

......

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2232189.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【论文解读】Med-BERT: 用于疾病预测的大规模结构化电子健康记录的预训练情境化嵌入

【论文解读】Med-BERT: 用于疾病预测的大规模结构化电子健康记录的预训练情境化嵌入 Med-BERT:pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction ​ ​ 摘要:基于电子健康记录(EHR)的深度学习(DL)预…

天锐绿盾加密软件与Ping32 — 数据安全与性能优化的完美结合

在数字化时代,企业对数据安全的重视程度日益增加。随着网络攻击和数据泄漏事件频发,选择合适的安全解决方案显得尤为重要。天锐绿盾与Ping32作为两款备受推崇的安全软件,各自为企业提供了独特的功能和优势,共同为企业的数据安全和…

随身WiFi三网切换靠谱吗?格行随身WiFi网速怎么样?

出门在外手机流量不够用,连接公共WIFI网速不稳定还存在安全隐患。小巧便携的随身WIFI成了外出用网的首选。面对市面上不同品牌,不同类型的随身WIFI不少朋友不免心生疑问:随身WIFI到底值不值得买?究竟是不是“智商税”?…

服务器数据恢复—SAN环境中LUN映射错误导致文件系统一致性出错的数据恢复案例

服务器数据恢复环境: SAN光纤网络环境,存储由一组6块硬盘组建的RAID6阵列构成,划分为若干LUN,MAP到跑不同业务的SUN SOLARIS操作系统服务器上。 服务器故障&分析: 因为业务需要,用户在该光纤存储环境中…

【skywalking 】More than 15,000 ‘grammar‘ tokens have been presented. 【未解决请求答案】

问题 skywalking相关版本信息 jdk:17skywalking:10.1.0apache-skywalking-java-agent:9.3.0ElasticSearch : 8.8.2 问题描述 More than 15,000 grammar tokens have been presented. To prevent Denial Of Service attacks, parsing has b…

004-Kotlin界面开发快速入水之TicTacToe

程序界面和效果 快速入水 要学习一样跟程序设计有关的东西,最好的办法始终是把手打湿,整一个能够运行,可以实验的东西出来。 也只有在程序开发中,我们才能想一个魔法师而不是魔术师,我们真的能够创造一个东西。而且编…

Node.js:Express 服务 路由

Node.js:Express 服务 & 路由 创建服务处理请求req对象 静态资源托管托管多个资源挂载路径前缀 路由模块化 Express是Node.js上的一个第三方框架,可以快速开发一个web框架。本质是一个包,可以通过npm直接下载。 创建服务 Express创建一…

C语言 | Leetcode C语言题解之第530题二叉搜索树的最小绝对差

题目: 题解: void dfs(struct TreeNode* root, int* pre, int* ans) {if (root NULL) {return;}dfs(root->left, pre, ans);if (*pre -1) {*pre root->val;} else {*ans fmin(*ans, root->val - (*pre));*pre root->val;}dfs(root->…

重学SpringBoot3-整合 Elasticsearch 8.x (二)使用Repository

更多SpringBoot3内容请关注我的专栏:《SpringBoot3》 期待您的点赞👍收藏⭐评论✍ 整合 Elasticsearch 8.x (二)使用Repository 1. 环境准备1.1 项目依赖1.2 Elasticsearch 配置 2. 使用Repository的基本步骤2.1 创建实体类2.2 创…

SpringBoot源码(四):run() 方法解析(一)

run()方法: public ConfigurableApplicationContext run(String... args) {// 记录应用启动时间long startTime System.nanoTime();DefaultBootstrapContext bootstrapContext createBootstrapContext();// 创建 ConfigurableApplicationContext 对象Configurabl…

ASP .NET CORE 6 在项目中集成WatchDog开源项目

概念 WatchDog是一个开源的项目,可以实现对.Net 应用程序和API实现实时应用日志和性能监控平台。可以实现实时记录和查看应用程序中的消息、事件、HTTP请求和响应,以及运行时捕获的异常,有效帮助开发人员去排查应用异常,提升开发效…

分类算法——决策树 详解

决策树的底层原理 决策树是一种常用的分类和回归算法,其基本原理是通过一系列的简单决策,将数据集划分为多个子集,从而实现分类。决策树的核心思想是通过树形结构表示决策过程,节点代表特征,边代表决策,叶子…

python 使用进程池并发执行 SQL 语句

这段代码使用了 Python 的 multiprocessing 模块来实现真正的并行处理,绕过 Python 的全局解释器锁(GIL)限制,从而在多核 CPU 上并发执行多个 SQL 语句。 from pyhive import hive import multiprocessing# 建立连接 conn hive.…

[ 问题解决篇 ] win11中本地组策略编辑器gpedit.msc打不开(gpedit.msc缺失)

🍬 博主介绍 👨‍🎓 博主介绍:大家好,我是 _PowerShell ,很高兴认识大家~ ✨主攻领域:【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 🎉点赞➕评论➕收藏 养成习…

[Python学习日记-55] 软件开发目录设计规范

[Python学习日记-55] 软件开发目录设计规范 简介 为什么要设计好目录结构? 目录组织方式 关于 README 的内容 关于 setup.py 和 requirements.txt 关于配置文件的使用方法 简介 我们在浏览一些开源项目或者是一些安装后的软件的时候会发现,不同的两…

18.农产品销售系统(基于springboot和vue的Java项目)

目录 1.系统的受众说明 2.开发环境与技术 2.1 Java语言 2.2 MYSQL数据库 2.3 IDEA开发工具 2.4 Spring Boot框架 3.系统分析 3.1 可行性分析 3.1.1 技术可行性 3.1.2 经济可行性 3.1.3 操作可行性 3.2 系统流程 3.2.1 操作流程 3.2.2 登录流程 3.2.3 删除信…

嵌入式常用功能之通讯协议1--IIC

嵌入式常用功能之通讯协议1--串口 嵌入式常用功能之通讯协议1--IIC(本文) 嵌入式常用功能之通讯协议1--SPI 一、IIC总线协议介绍 Inter-Integrated Circuit(集成电路总线),是由 Philips 半导体公司(现在的 NXP 半导体…

一位纯理科生,跨界自学中医,自行组方治好胃病、颈椎病与高血脂症,并在最权威的中国中医药出版社出版壹本专业中医图书!

这是一位铁杆中医迷, 也是《神农本草经——精注易读本》的作者。 希望更多的人能够受到启发,感受中医之神奇,敢于跨界,爱好中医,学习中医! 一个病人以自己的切身感受与诊断,并使之汤药治愈疾病&…

java项目之个人博客系统的设计与实现(springboot)

风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的闲一品交易平台。项目源码以及部署相关请联系风歌,文末附上联系信息 。 项目简介: springboot个人博客系统的…

使用 Sortable.js 库 实现 Vue3 elementPlus 的 el-table 拖拽排序

文章目录 实现效果Sortable.js介绍下载依赖添加类名导入sortablejs初始化拖拽实例拖拽完成后的处理总结 在开发过程中,我们经常需要处理表格数据,并为用户提供便捷的排序方式。特别是在需要管理长列表、分类数据或动态内容时,拖拽排序功能显得…