如何有效提升MySQL大表分页查询效率(本文以一张900万条数据体量的表为例进行详细解读)

news2025/1/11 2:37:20

文章目录

    • 1、提出问题
      • 1.1 问题测试
    • 2、解决问题(三种方案)
      • 2.1、方案一:查询的时候,只返回主键 ID
      • 2.2、方案二:查询的时候,通过主键 ID 过滤
      • 2.3、方案三:采用 elasticSearch 作为搜索引擎
    • 3、总结

1、提出问题

在某车辆监控项目的软件系统开发过程中,记录每台车的行驶轨迹表数据会随着时间的推移,单表的数据量会越来越大(每台车辆10秒记录一条)。

每台车的数据体量:

车辆记录方式天/按8个小时计算
每台车辆10秒一条记录2880864001036800

可见,车辆轨迹数据的查询不会像最初那样简单快速,如果查询关键字段没有走索引,会直接影响到用户体验,甚至会影响到服务是否能正常运行!

下面就某月车辆行驶轨迹表为例,数据库是 Mysql,数据体量在 900 万以上,详细介绍分页查询下,不同阶段的查询效率情况。

在这里插入图片描述

1.1 问题测试

下面我们一起来测试一下,每次查询车辆行驶轨迹表时最多返回 100 条数据,不同的起始下,数据库查询性能的差异。

查询sql语句起点位置查询数量耗时(秒)
SELECT * FROM t_location_log ORDER BY id LIMIT 0,10001000.830s
SELECT * FROM t_location_log ORDER BY id LIMIT 10000,10001000.876s
SELECT * FROM t_location_log ORDER BY id LIMIT 1000000,10001001.038s
SELECT * FROM t_location_log ORDER BY id LIMIT 2000000,10001001.248s
SELECT * FROM t_location_log ORDER BY id LIMIT 3000000,10001001.326s
SELECT * FROM t_location_log ORDER BY id LIMIT 4000000,10001001.526s
SELECT * FROM t_location_log ORDER BY id LIMIT 5000000,10001001.906s

在这里插入图片描述

可以看出,随着起点位置越大,分页查询效率下降明显,一般查询耗时超过 1 秒的 SQL 都被称为慢 SQL,事实上,这还只是数据库层面的耗时,还没有算后端服务的处理链路时间,以及返回给前端的数据渲染时间,以百万级的单表查询为例,如果数据库查询耗时 1 秒,再经过后端的数据封装处理,前端的数据渲染处理,以及网络传输时间,没有异常的情况下,差不多在 3~4 秒之间,必须在限定的时间内尽快优化,不然可能会影响服务的正常运行和用户体验。

对于千万级的单表数据查询,我也测试了一下,查询耗时结果:43 秒!
在这里插入图片描述

据互联网软件用户体验报告:

  • b当平均请求耗时在1秒之内,用户体验是最佳的,此时的软件也是用户留存度最高的;
  • 2 秒之内,还勉强过的去,用户能接受;
  • 当超过 3 秒,体验会稍差;超过 5 秒,基本上会卸载当前软件。

2、解决问题(三种方案)

2.1、方案一:查询的时候,只返回主键 ID

我们继续回到上文给大家介绍的客户表查询,将select *改成select id,简化返回的字段,我们再来观察一下查询耗时。

查询sql语句起点位置查询数量耗时(秒)
SELECT id FROM t_location_log ORDER BY id LIMIT 0,10001000.649s
SELECT id FROM t_location_log ORDER BY id LIMIT 10000,10001000.713s
SELECT id FROM t_location_log ORDER BY id LIMIT 1000000,10001000.883s
SELECT id FROM t_location_log ORDER BY id LIMIT 2000000,10001001.107s
SELECT id FROM t_location_log ORDER BY id LIMIT 3000000,10001001.272s
SELECT id FROM t_location_log ORDER BY id LIMIT 4000000,10001001.452s
SELECT id FROM t_location_log ORDER BY id LIMIT 5000000,10001001.753s

通过对比发现,通过简化返回的字段,可以提升查询效率。

实际的操作思路就是先通过分页查询满足条件的主键 ID,然后通过主键 ID 查询部分数据,可以显著提升查询效果。

-- 先分页查询满足条件的主键ID
select id from  t_location_log order by id limit 100000,10;

-- 再通过分页查询返回的ID,批量查询数据
select * from  t_location_log where id in (1,2,3,4,.....);

2.2、方案二:查询的时候,通过主键 ID 过滤

这种方案有一个要求就是主键ID,必须是数字类型,实践的思路就是取上一次查询结果的 ID 最大值,作为过滤条件,而且排序字段必须是主键 ID,不然分页排序顺序会错乱。

查询sql语句耗时(秒)
SELECT id FROM t_location_log WHERE id > 100000 ORDER BY id LIMIT 1000.636s
SELECT id FROM t_location_log WHERE id > 500000 ORDER BY id LIMIT 1000.669s
SELECT id FROM t_location_log WHERE id > 1000000 ORDER BY id LIMIT 1000.738s

带上主键 ID 作为过滤条件,查询性能非常的稳定,基本上在0.69 s内可以返回。

这种方案还是非常可行的,如果当前业务对排序要求不多,可以采用这种方案,性能也非常杠!但是如果当前业务对排序有要求,比如通过客户最后修改时间、客户最后下单时间、客户最后下单金额等字段来排序,那么上面介绍的【方案一】,比【方案二】查询效率更高!

2.3、方案三:采用 elasticSearch 作为搜索引擎

当数据量越来越大的时候,尤其是出现分库分表的数据库,以上通过主键 ID 进行过滤查询,效果可能会不尽人意,还有另一种比较好的解决办法就是将数据存储到 elasticSearch 中,通过 elasticSearch 实现快速分页和搜索,效果提升也是非常明显。

3、总结

上文中介绍的表主键 ID 都是数值类型的,之所以采用数字类型作为主键,是因为数字类型的字段能很好的进行排序。但如果当前表的主键 ID 是字符串类型,比如 uuid 这种,就没办法实现这种排序特性,而且搜索性能也非常差,因此不建议大家采用 uuid 作为主键ID,具体的数值类型主键 ID 的生成方案有很多种,比如自增、雪花算法等等,都能很好的满足我们的需求。

希望本文中的一些sql查询技巧给你实际工作中帮到你。

在这里插入图片描述


人生从来没有真正的绝境。只要一个人的心中还怀着一粒信念的种子,那么总有一天,他就能走出困境,让生命重新开花结果。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2228151.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于卷积神经网络的苹果病害识别与防治系统,resnet50,mobilenet模型【pytorch框架+python源码】

更多目标检测和图像分类识别项目可看我主页其他文章 功能演示: 苹果病害识别与防治系统,卷积神经网络,resnet50,mobilenet【pytorch框架,python源码】_哔哩哔哩_bilibili (一)简介 基于卷积…

Java多线程编程基础

目录 编写第一个多线程程序 1. 方式一 : 继承Thread类, 重写run方法 2. 方式二: 实现Runnable接口, 重写run方法 3. 方式三: 使用Lambda表达式 [匿名内部类] [Lambda表达式] 在上个文章中, 我们了解了进程和线程的相关概念. 那么, 在Java中, 我们如何进行多线程编程呢? …

ffmpeg视频滤镜:网格-drawgrid

滤镜介绍 drawgrid 官网链接 》 FFmpeg Filters Documentation drawgrid会在视频上画一个网格。 滤镜使用 参数 x <string> ..FV.....T. set horizontal offset (default "0")y <string> ..FV.....T. set…

【AIGC】2024-arXiv-Lumiere:视频生成的时空扩散模型

2024-arXiv-Lumiere: A Space-Time Diffusion Model for Video Generation Lumiere&#xff1a;视频生成的时空扩散模型摘要1. 引言2. 相关工作3. Lumiere3.1 时空 U-Net (STUnet)3.2 空间超分辨率的多重扩散 4. 应用4.1 风格化生成4.2 条件生成 5. 评估和比较5.1 定性评估5.2 …

没有对象来和我手撕红黑树吧

1. 红黑树的介绍 红黑树也是一种自平衡的二叉搜索树&#xff0c;在每一个节点增加了一个存储位来表示节点的颜色&#xff0c;可以是红色也可以是黑色&#xff0c;通过约束颜色来维持树的平衡&#xff0c;具有以下的性质&#xff1a; 每个节点不是红色就是黑色根节点为黑色如果…

【网络面试篇】TCP与UDP类

目录 一、综述 1. TCP与UDP的概念 2. 特点 3. 区别 4. 对应的使用场景 二、补充 1. 基础概念 &#xff08;1&#xff09;面向连接 &#xff08;2&#xff09;可靠的 &#xff08;3&#xff09;字节流 2. 相关问题 &#xff08;1&#xff09;TCP 和 UDP 可以同时绑定…

linux:回车换行+进度条+git理解与使用以及如何解决免密码push问题

目录 特殊符号 Linux小程序---进度条 1.\n和\r的理解 2.缓冲区 3.设计简单的倒计时 4.设计简单的进度条 git-版本控制器 1.理解什么是版本控制器? 2.git的使用 3.git的其他说明 总结上传过程 特殊符号 1.(取消显化) 的作用:执行指令,但指令本身不会显化; 举个例子:我…

智能家居10G雷达感应开关模块,飞睿智能uA级别低功耗、超高灵敏度,瞬间响应快

在当今科技飞速发展的时代&#xff0c;智能家居已经逐渐成为人们生活中不可或缺的一部分。从智能灯光控制到智能家电的联动&#xff0c;每一个细节都在为我们的生活带来便利和舒适。而在众多智能家居产品中&#xff0c;10G 雷达感应开关模块以其独特的优势&#xff0c;正逐渐成…

什么品牌的护眼台灯比较好?五款目前比较好用的护眼台灯

在当今社会&#xff0c;近视已成为一种普遍现象&#xff0c;其背后的原因复杂多样。除了部分由遗传因素导致外&#xff0c;不良的用眼习惯和不适宜的照明环境也是不可忽视的重要因素。长时间盯着电子屏幕、阅读时光线过强或过弱、坐姿不正等&#xff0c;都可能给眼睛带来额外的…

redis详细教程(4.GEO,bitfield,Stream)

GEO Redis GEO 是 Redis 数据库中的一个功能模块&#xff0c;自 Redis 3.2 版本开始引入&#xff0c;专门用于处理地理位置信息。这个模块使得 Redis 能够存储并查询地理坐标&#xff0c;非常适合用于需要地理位置数据的应用&#xff0c;如实时位置查询、地理围栏、距离计算等…

Kafka 基础入门

文章内容是学习过程中的知识总结&#xff0c;如有纰漏&#xff0c;欢迎指正 文章目录 前言 1. 核心概念 1.1 Producer 1.2 broker 1.3 consumer 1.4 zookeeper 1.5 controller 1.6 Cluster 2. 逻辑组件 2.1 Topic 2.2 Partition 2.3 Replication 2.4 leader & follower 3. …

苹果生态的机器学习和同态加密

1. 引言 Apple认为隐私是一项基本人权。其保护用户隐私的工作遵循一系列隐私原则&#xff0c;其中一项原则是优先使用设备上的处理。通过在用户设备上本地执行计算&#xff0c;有助于最大限度地减少与 Apple 或其他实体共享的数据量。当然&#xff0c;用户可以请求由机器学习 …

甲骨文云免费20G对象存储挂载到VPS

准备条件 1.一个获取到免费vps的甲骨文账号Cloud Infrastructure | Oracle 2.一台需要挂载的VPS跳转中 - 有云短链接 3.用到的开源项目https://github.com/s3fs-fuse/s3fs-fuse 一、甲骨文账号端操作 1.1获取存储桶名称和名称空间 进入甲骨文账号,依次如图打开-存储-存储桶…

开源的GPT-4o模型使用指南,Mini-Omni2集视觉、语音和双工能力于一体的

1. Mini-Omni2 是什么&#xff1f; Mini-Omni2 是一个开源的多模态语言模型&#xff0c;旨在模拟 GPT-4o 的视觉、语音和文本处理能力。它能够理解和生成视觉、听觉和文本内容&#xff0c;并支持实时的语音输出和灵活的双工交互。 Mini-Omni2 由清华大学和 Inspirai 的研究人…

【C++】string 类深度解析:探秘字符串操作的核心

快来参与讨论&#x1f4ac;&#xff0c;点赞&#x1f44d;、收藏⭐、分享&#x1f4e4;&#xff0c;共创活力社区。 目录 &#x1f4af;前言 &#x1f4af;为什么要学习 string 类 &#xff08;一&#xff09;简化操作 &#xff08;二&#xff09;确保安全 &#xff08;三…

卷积神经网络实验三:模型优化(1)

作者有话说&#xff1a; 这篇文章写的还是比混乱的。因为本人也是第一次做这样的尝试&#xff0c;虽然接触深度学习有一年了&#xff0c;但是对于模型的优化仅仅是局限于理论上。通过这一次的实验&#xff0c;我对于模型的理解也更深了几分。我不期望这篇文章能帮你能解决多大问…

clickhouse运维篇(三):生产环境一键生成配置并快速部署ck集群

前提条件&#xff1a;先了解集群搭建流程是什么样&#xff0c;需要改哪些配置&#xff0c;有哪些环境&#xff0c;这个文章目的是简化部署。 clickhouse运维篇&#xff08;一&#xff09;&#xff1a;docker-compose 快速部署clickhouse集群 clickhouse运维篇&#xff08;二&am…

嵌入式浏览器 -- Chromium VS Firefox

嵌入式浏览器概念 嵌入式浏览器是嵌入式系统中的核心组件之一&#xff0c;用于为设备提供网络访问能力和内容显示功能。与传统PC浏览器相比&#xff0c;嵌入式浏览器更加注重性能优化和资源效率&#xff0c;同时确保核心功能可用&#xff0c;如HTML渲染、JavaScript支持和多媒…

CSP-J2024入门级T3:小木棍

题目链接 CSP-J2024T3:小木棍 题目描述 小 S 喜欢收集小木棍。在收集了 n n n 根长度相等的小木棍之后,他闲来无事,便用它们拼起了数字。用小木棍拼每种数字的方法如下图所示。 现在小 S 希望拼出一个正整数,满足如下条件: 拼出这个数恰好使用

Ubuntu 20.04 安装 OpenCV 和 OpenCV_contrib 教程

Ubuntu 20.04 安装 OpenCV 和 OpenCV_contrib 教程 Ubuntu 20.04 安装 OpenCV 和 OpenCV_contrib 教程前言 OpenCV概述核心功能优势特点应用领域安装与使用 OpenCV_contrib概述核心功能具体模块 安装与使用一、准备工作二、下载OpenCV和OpenCV_contrib三、编译和安装OpenCV四、…