Ubuntu 20.04 安装 OpenCV 和 OpenCV_contrib 教程

news2024/11/26 5:35:32

Ubuntu 20.04 安装 OpenCV 和 OpenCV_contrib 教程

      • Ubuntu 20.04 安装 OpenCV 和 OpenCV_contrib 教程
        • 前言
      • OpenCV
        • 概述
        • 核心功能
        • 优势特点
        • 应用领域
        • 安装与使用
      • OpenCV_contrib
        • 概述
        • 核心功能
        • 具体模块
      • 安装与使用
        • 一、准备工作
        • 二、下载OpenCV和OpenCV_contrib
        • 三、编译和安装OpenCV
        • 四、配置环境变量
        • 五、验证安装
        • 六、总结
        • 七、安装时遇到的问题

Ubuntu 20.04 安装 OpenCV 和 OpenCV_contrib 教程

前言

在Ubuntu 20.04上安装OpenCV和OpenCV_contrib可以为你提供强大的计算机视觉和图像处理功能。它们各自具有独特的特点和功能。以下是对它们的详细介绍:

OpenCV

概述

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,自1999年由Intel建立以来,凭借其强大的功能和广泛的应用,迅速成为计算机视觉领域的核心力量。它提供了丰富的工具和功能,广泛应用于图像处理、视频分析、视图重建、物体识别、面部识别等领域。

核心功能

OpenCV的功能覆盖了图像处理的各个方面,主要包括但不限于以下几点:

  • 图像处理:支持图像的加载、保存、调整大小、旋转、裁剪、滤波、边缘检测等操作。OpenCV提供的直方图均衡化、图像平滑等功能,能够有效改善图像质量,为后续处理奠定基础。
  • 物体检测与跟踪:集成了多种目标检测和跟踪算法,如Haar级联检测器、HOG特征检测器、卡尔曼滤波器等,广泛应用于人脸检测、行人检测、车牌识别等场景。
  • 特征提取与匹配:包括角点检测、描述符提取、特征匹配等功能,有助于从图像中提取关键信息并进行比较和分析。
  • 机器学习:集成了分类、聚类、回归等机器学习算法,方便进行模式识别和数据挖掘。
  • 深度学习:与主流深度学习框架(如TensorFlow、PyTorch)集成,支持神经网络模型的训练和推断,推动计算机视觉技术的进一步发展。
  • 视频分析:包括视频捕捉、视频处理、目标跟踪、视频稳定等功能,适用于监控和安全等应用。
优势特点
  • 开源性:作为开源项目,OpenCV允许任何人自由地使用、修改及分发其源代码。
  • 跨平台兼容性:支持Windows、Linux、Mac等多个操作系统,展现了出色的灵活性和广泛适用性。
  • 高效性能:基于C/C++的底层设计使得OpenCV在图像处理任务中表现卓越,计算能力出众。
  • 可扩展接口:除C/C++外,还提供Python等语言接口,便于开发者根据需求进行个性化扩展和定制。
应用领域

OpenCV的广泛应用领域使其成为连接多个行业的桥梁,包括但不限于:

  • 智能监控:通过人脸检测、行为分析等技术,提高监控系统的智能化水平。
  • 自动驾驶:在车辆识别、道路检测、障碍物避让等方面发挥重要作用。
  • 医学图像处理:辅助医生进行病灶检测、手术规划等。
  • 工业检测:实现产品质量检测、自动化生产等。
  • 农业图像分析:监测作物生长状况、病虫害识别等。
  • 机器人技术:为机器人提供视觉感知能力,实现自主导航、目标抓取等功能。
安装与使用

以Python用户为例,可以通过pip命令安装OpenCV库:

pip install opencv-python

或者使用conda进行安装:

conda install -c conda-forge opencv

安装完成后,便可以在Python项目中导入OpenCV库,并使用其提供的函数和类进行图像处理或计算机视觉任务。

OpenCV_contrib

概述

OpenCV_contrib是OpenCV的一个扩展库,主要用于开发和维护OpenCV的额外模块。这些模块通常包含高级功能、实验性功能以及社区贡献的功能扩展,为开发者提供了更广泛的工具选择,以处理复杂的视觉任务。

核心功能

OpenCV_contrib项目包含了许多额外的功能模块,这些模块通常具有以下特点:

  • 高级功能:包括但不限于深度学习、增强现实、3D重建等高级计算机视觉功能。
  • 实验性功能:这些模块可能还在开发中,API可能不稳定,因此不适合直接集成到OpenCV的主库中。
  • 社区贡献:许多模块是由社区开发者贡献的,提供了丰富的功能扩展。
具体模块

OpenCV_contrib包含了一系列先进的算法和技术,如:

  • Face Detection and Recognition:提供了基于深度学习的dnn模块,可以用于实时的人脸检测和识别。
  • Super Resolution:superres模块提供了图像超分辨率重建算法,能够提升低清晰度图片的质量。
  • Structure from Motion (SfM):使用sfm模块可以从多视角图像中恢复场景的三维结构。
  • Feature Detectors and Descriptors:xfeatures2d提供了许多特征检测和描述符,如AKAZE、SURF等,这些在对象识别和图像匹配中非常有用。

此外,OpenCV_contrib还引入了实验性的模块,例如optflow(光流估计)、text(文本检测和识别)以及aruco(AR标记),这些都对研究者和开发者极其有价值。

安装与使用

OpenCV_contrib的安装通常需要与OpenCV主库一起进行编译。确保OpenCV和OpenCV_contrib的版本一致,本教程将指导你如何一步步安装OpenCV和OpenCV_contrib,并确保配置正确。。安装完成后,便可以在项目中导入并使用OpenCV_contrib提供的额外模块和功能。

一、准备工作
  1. 更新系统软件包

    首先,确保你的系统软件包是最新的。打开终端,输入以下命令:

    sudo apt update
    sudo apt upgrade
    

在这里插入图片描述
2. 安装依赖项

安装OpenCV和OpenCV_contrib所需的依赖项:

sudo apt install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev

在这里插入图片描述

二、下载OpenCV和OpenCV_contrib
  1. 创建工作目录

    首先,创建一个工作目录来存放OpenCV和OpenCV_contrib的源码:

    mkdir ~/opencv_build
    cd ~/opencv_build
    

在这里插入图片描述
2. 克隆OpenCV和OpenCV_contrib的源码

如果希望安装最新版可直接使用git clone命令从GitHub上克隆OpenCV和OpenCV_contrib的源码:

git clone https://github.com/opencv/opencv.git
git clone https://github.com/opencv/opencv_contrib.git

如果希望下载指定版本有两种方式:
官网下载:https://opencv.org/releases/
在这里插入图片描述
如果要下载对应的opencv_contrib,需要在github仓库进行(如图):
https://github.com/opencv
在这里插入图片描述
进入指定仓库,找到Release,进行源码下载:
在这里插入图片描述
在这里插入图片描述
解压指令
zip:解压到当前文件夹

    unzip opencv-4.10.0.zip

tar.gz:

    tar -zxvf opencv-4.10.0.tar.gz


将opencv和对应版本的opencv_contrib全部解压。
在这里插入图片描述

三、编译和安装OpenCV
  1. 创建build目录

    在OpenCV源码目录下创建一个build目录,并进入该目录:

    cd ~/opencv_build/opencv-4.10.0
    mkdir build
    cd build
    

在这里插入图片描述

  1. 使用CMake配置OpenCV构建

    使用cmake命令配置OpenCV的构建选项,包括指定OpenCV_contrib的路径:

cmake -D CMAKE_BUILD_TYPE=Release \
-D CMAKE_INSTALL_PREFIX=/usr/local/opencv4.10 \
-D OPENCV_EXTRA_MODULES_PATH=/root/workspace/programs/opencv_build/opencv_contrib-4.10.0/modules \
-D OPENCV_GENERATE_PKGCONFIG=YES \
-D BUILD_opencv_world=YES \
-D BUILD_opencv_python2=OFF \
-D BUILD_opencv_python3=ON \
-D PYTHON_DEFAULT_EXECUTABLE=/root/workspace/anaconda3/envs/dscnet/bin/python3 \
-D PYTHON3_EXECUTABLE=/root/workspace/anaconda3/envs/dscnet/bin/python3 \
-D PYTHON3_LIBRARY=/root/workspace/anaconda3/envs/dscnet/lib/libpython3.8.so \
-D PYTHON_INCLUDE_DIR=/root/workspace/anaconda3/envs/dscnet/include/python3.8 \
-D PYTHON3_NUMPY_INCLUDE_DIRS=/root/workspace/anaconda3/envs/dscnet/lib/python3.8/site-packages/numpy/core/include \
-D PYTHON3_PACKAGES_PATH=/root/workspace/anaconda3/envs/dscnet/lib/python3.8/site-packages ..

在这里插入图片描述

注意:-D OPENCV_EXTRA_MODULES_PATH选项指定了OpenCV_contrib的modules目录的路径。
如果该命令中不加-D CMAKE_INSTALL_PREFIX=/usr/local/opencv4.10,则默认各部分分别安装在/usr/local/目录的include/, bin/, lib/3个文件夹下。

-D OPENCV_GENERATE_PKGCONFIG=YES: OpenCV4以上版本默认不使用pkg-config,该编译选项开启生成opencv4.10.pc文件,支持pkg-config功能。

-D WITH_CUDA=ON实现和cuda的联合编译。

后面关于python的路径设置以已安装anaconda的设定为准,需要注意的是python版本和你使用的虚拟环境一致。

这里有时候偶尔会报错"fatal error: numpy/ndarrayobject.h: 没有那个文件或目录",解决方法:打开对应虚拟环境的python输入

import numpy as np
np.get_include()

按照这个输出路径重新配置PYTHON3_NUMPY_INCLUDE_DIRS,然后再cmake。
注意:如果是在build目录下进行cmake,一定不要忘了最后的两个点cmake xxx ..

  1. 编译和安装OpenCV

    使用make命令编译OpenCV,并使用sudo make install命令安装:

    make -j$(nproc)
    sudo make install
    

    注意:-j$(nproc)选项会利用你系统的所有核心来加速编译过程。

四、配置环境变量
  1. 更新动态链接库配置

    /etc/ld.so.conf.d/目录下创建一个新的配置文件,并添加OpenCV库的路径:

    sudo nano /etc/ld.so.conf.d/opencv.conf
    

    在文件中添加以下内容:

    /usr/local/lib
    

    保存并关闭文件,然后运行sudo ldconfig命令来更新动态链接库配置。

  2. 配置环境变量

    打开/etc/bash.bashrc文件,并添加以下行来配置环境变量:

    sudo nano /etc/bash.bashrc
    

    在文件末尾添加以下内容:

    PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig
    export PKG_CONFIG_PATH
    

    保存并关闭文件,然后运行source /etc/bash.bashrc命令来使更改生效。

五、验证安装
  1. 检查OpenCV版本

    在终端输入以下命令来检查OpenCV的版本:

    pkg-config --modversion opencv4
    

    如果输出了OpenCV的版本号,则表示安装成功。

  2. 编译和运行示例程序

    进入OpenCV的samples目录,并编译和运行一个示例程序来验证安装:

    cd ~/opencv_build/opencv/samples/cpp/example_cmake
    cmake .
    make
    ./opencv_example
    

    如果程序成功运行并显示了一个窗口,则表示OpenCV和OpenCV_contrib已经正确安装和配置。

六、总结

通过以上步骤,你已经成功在Ubuntu 20.04上安装了OpenCV和OpenCV_contrib,并进行了基本的配置和验证。现在你可以开始使用OpenCV进行各种计算机视觉和图像处理任务了。

七、安装时遇到的问题

ippicv_2020_lnx_intel64_20191018_general.tgz下载不了
手动下载ippicv_2020_lnx_intel64_20191018_general.tgz

https://github.com/opencv/opencv_3rdparty/blob/ippicv/master_20191018/ippicv/ippicv_2020_lnx_intel64_20191018_general.tgz(根据错误信息更新)

上传至/home/test(自定义目录)下

修改ippicv.cmake

 set(THE_ROOT "${OpenCV_BINARY_DIR}/3rdparty/ippicv")
  ocv_download(FILENAME ${OPENCV_ICV_NAME}
               HASH ${OPENCV_ICV_HASH}
               URL
                 "${OPENCV_IPPICV_URL}"
                 "$ENV{OPENCV_IPPICV_URL}"
                 "https://raw.githubusercontent.com/opencv/opencv_3rdparty/${IPPICV_COMMIT}/ippicv/"
               DESTINATION_DIR "${THE_ROOT}"
               ID IPPICV
               STATUS res
               UNPACK RELATIVE_URL)

改为

 set(THE_ROOT "${OpenCV_BINARY_DIR}/3rdparty/ippicv")
  ocv_download(FILENAME ${OPENCV_ICV_NAME}
               HASH ${OPENCV_ICV_HASH}
               URL
                 "${OPENCV_IPPICV_URL}"
                 "$ENV{OPENCV_IPPICV_URL}"
                 "file:///home/test/"
               DESTINATION_DIR "${THE_ROOT}"
               ID IPPICV
               STATUS res
               UNPACK RELATIVE_URL)

ade-v0.1.1f.zip下载不了
手动下载

https://github.com/opencv/ade/archive/v0.1.1f.zip(根据错误信息更新)

上传至/home/test

修改DownloadADE.cmake

ocv_download(FILENAME ${ade_filename}
             HASH ${ade_md5}
             URL
               "${OPENCV_ADE_URL}"
               "$ENV{OPENCV_ADE_URL}"
               "https://github.com/opencv/ade/archive/"
             DESTINATION_DIR ${ade_src_dir}
             ID ADE
             STATUS res
             UNPACK RELATIVE_URL)

改为

ocv_download(FILENAME ${ade_filename}
             HASH ${ade_md5}
             URL
               "${OPENCV_ADE_URL}"
               "$ENV{OPENCV_ADE_URL}"
               "file:///home/test/"
             DESTINATION_DIR ${ade_src_dir}
             ID ADE
             STATUS res
             UNPACK RELATIVE_URL)
            

注意,修改是最后的斜杠(/)不能丢

问题:编译OpenCV 4.10.0, 显示出错:

/usr/bin/ld: /lib/x86_64-linux-gnu/libwayland-client.so.0: undefined reference to ffi_type_uint32@LIBFFI_BASE_7.0’
/usr/bin/ld: /lib/x86_64-linux-gnu/libwayland-client.so.0: undefined reference to ffi_type_sint32@LIBFFI_BASE_7.0' /usr/bin/ld: /lib/x86_64-linux-gnu/libwayland-client.so.0: undefined reference to ffi_type_pointer@LIBFFI_BASE_7.0’
/usr/bin/ld: /lib/x86_64-linux-gnu/libwayland-client.so.0: undefined reference to ffi_type_void@LIBFFI_BASE_7.0' /usr/bin/ld: /lib/x86_64-linux-gnu/libwayland-client.so.0: undefined reference to ffi_prep_cif@LIBFFI_BASE_7.0
/usr/bin/ld: /lib/x86_64-linux-gnu/libwayland-client.so.0: undefined reference to ffi_call@LIBFFI_BASE_7.0' collect2: error: ld returned 1 exit status make[2]: *** [apps/annotation/CMakeFiles/opencv_annotation.dir/build.make:104:bin/opencv_annotation] 错误 1 make[1]: *** [CMakeFiles/Makefile2:3208:apps/annotation/CMakeFiles/opencv_annotation.dir/all] 错误 2 make[1]: *** 正在等待未完成的任务....

问题分析:系统的动态链接库和Anaconda的动态链接库指向的版本不同,因此编译出错。

解决方法:先下载一个工具包locate。比find好用。

$ sudo apt install locate
$ sudo updatedb

然后用内置命令ldd查看出现问题的libwayland-client.so.0当中,所依赖的ffi这个库的叫什么。

$ ldd /lib/x86_64-linux-gnu/libwayland-client.so.0 | grep ffi

我们可以发现依赖的这个库叫做libffi.so.7。
在这里插入图片描述
之后locate这个文件,发现除了/usr/lib/x86_64-linux-gnu之外,我的Anaconda安装目录/lib下面也有一个libffi.so.7。输入以下命令分别查看两个libffi.so.7链接的动态库文件:

查看系统的libffi

$ ll /lib/x86_64-linux-gnu/ | grep ffi

查看Anaconda的libffi

$ ll ~/anaconda3/lib/ | grep ffi

结果显示系统的libffi.so.7指向了7.1.0版本,而Anaconda下的指向了8.1.2版本。
在这里插入图片描述
在这里插入图片描述

因此,把anaconda下的libffi.so.7指向系统的7.1.0就可以了。

$ cd (你的Anaconda安装目录)/lib
$ sudo rm libffi.so.7
$ sudo ln -s /lib/x86_64-linux-gnu/libffi.so.7.1.0 libffi.so.7

再次查看Anaconda下的ffi,发现libffi.so.7已经指向了lib/x86_64-linux-gnu/libffi.so.7.1.0。
在这里插入图片描述
再次编译OpenCV,通过。

总结:当编译程序的时候,如果安装了Anaconda,经常会出现动态链接库的依赖指向问题。保证系统和Anaconda的依赖库版本一致,可以避免一些Bug。

ldd这个命令常用来打印或者查看程序运行所需的共享库(访问共享对象依赖关系),可以解决程序因缺少某个库文件而不能运行的一些问题。
————————————————

问题参考原文链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2228125.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

shodan5,参数使用,批量查找Mongodb未授权登录,jenkins批量挖掘

查找美国安全局漏洞 nww.nsa.gov(美国安全局官方网站) net参数使用 搜索指定的ip网段 shodan search --limit 10 --fields ip_str,port net:208.88.84.0/24 (老美国家安全局的一个网段)可能直接访问不太行,可以使用host参数,得到域名再去…

nrm的使用

在安装nrm之前,要先完成node.js的安装。 1、nrm的介绍 ‌nrm(npm registry manager)是一个npm源管理器,允许用户在不同npm源之间快速切换。 关于npm和nvm的介绍,详见文章nvm的使用-CSDN博客。 解释:比如…

图片懒加载(自定义指令)

----------------------------------------------------------- 图片懒加载自定义指令使用mock模拟随机图片列表组件如下(主要内容):配置自定义指令 图片懒加载 实现思路 使用自定义指令实现通用图片懒加载(在图片到达视口内时再…

socket编程---UDP

目录 一、socket 二、socket接口 1.流程原理 2.代码 前言 提示:这里可以添加本文要记录的大概内容: socket编程又称套接字编程,指进行网络通信程序的编写 提示:以下是本篇文章正文内容,下面案例可供参考 一、soc…

R语言机器学习算法实战系列(十四): CatBoost分类算法+SHAP值 (categorical data gradient boosting)

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍CatBoost的原理CatBoost的步骤教程下载数据加载R包导入数据数据预处理数据描述数据切割设置数据对象调节参数训练模型预测测试数据评估模型模型准确性混淆矩阵模型评估指标ROC Curv…

创建ODBC数据源SQLConfigDataSource函数的用法

网络上没有这个函数能实际落地的用法说明&#xff0c;我实践后整理一下&#xff1a; 1.头文件与额外依赖库&#xff1a; #include <odbcinst.h> #pragma comment(lib, "legacy_stdio_definitions.lib") 2.调用函数&#xff1a; if (!SQLConfigDataSourceW(…

HCIP-HarmonyOS Application Developer V1.0 笔记(一)

HarmonyOS的系统特性 硬件互助&#xff0c;资源共享;一次开发&#xff0c;多端部署;统一OS&#xff0c;弹性部署。 分布式软总线&#xff1a;分布式任务调度、分布式数据管理、分布式硬件虚拟化的基座 18N的独立设备 1个手机&#xff0c;8种设备&#xff08;车机&#xff0c…

upload-labs靶场Pass-21

upload-labs靶场Pass-21 本关上传方法众多&#xff0c;但是应该考察的是数组后缀绕过&#xff0c;所以我的上传围绕此展开 1.分析源码 $is_upload false; // 初始化上传状态为false $msg null; // 初始化消息变量为null// 检查是否有文件上传 if(!empty($_FILES[upload_fi…

【undefined reference to xxx】zookeeper库编译和安装 / sylar项目ubuntu20系统编译

最近学习sylar项目&#xff0c;编译项目时遇到链接库不匹配的问题&#xff0c;记录下自己解决问题过程&#xff0c;虽然过程很艰难&#xff0c;但还是解决了&#xff0c;以下内容供大家参考&#xff01; undefined reference to 问题分析 项目编译报错 /usr/bin/ld: ../lib/lib…

网络服务ssh

Linux 网络基础 一、知识回顾 网络地址&#xff1a;互联网协议地址&#xff08;IP地址&#xff09;为互联网上每一个网络或主机分配一个逻辑地址&#xff0c;IP地址工作在网络层。 ​ IP的分类&#xff1a;IPV4 IPV6 物理地址&#xff1a;物理地址&#xff08;MAC地址&…

Git获取本地仓库和常用指令

一、获取本地仓库 1&#xff09;在电脑的任意位置创建一个空目录&#xff08;例如test01&#xff09;作为我们的本地Git仓库 2&#xff09;进入这个目录中&#xff0c;点击右键打开Git bash窗口 3&#xff09;执行命令git init&#xff08;初始化当前目录为一个git仓库&…

解决报错:JDK版本不正确

加载maven过程中&#xff0c;控制台报错&#xff1a; Unable to make field private com.sun.tools.javac.processing.JavacProcessingEnvironment$DiscoveredProcessors com.sun.tools.javac.processing.JavacProcessingEnvironment.discoveredProcs accessible: module jdk.…

Webserver(1.8)操作函数

目录 文件属性操作函数access函数chmod函数chown函数truncate函数 目录操作函数mkdir函数rmdir函数rename函数chdir函数*getcwd函数 目录遍历函数*opendir函数*readdir函数closedir函数 dup、dup2函数dupdup2 fcntl函数 文件属性操作函数 access函数 判断某个文件是否有某个权…

解决ElasticSearch启动成功却无法在浏览器访问问题

目录 前言&#xff1a; 问题复现 &#xff1a; 解决问题&#xff1a; 1、修改sysctl.conf文件 2、在sysctl.conf文件增加这段东西 3、 然后保存退出&#xff0c;输入以下命令使其生效 结语&#xff1a; 前言&#xff1a; 这篇文章是小白我今天突然启动es&#xff0c;发现e…

【tomcat系列漏洞利用】

Tomcat 服务器是一个开源的轻量级Web应用服务器&#xff0c;在中小型系统和并发量小的场合下被普遍使用。主要组件&#xff1a;服务器Server&#xff0c;服务Service&#xff0c;连接器Connector、容器Container。连接器Connector和容器Container是Tomcat的核心。一个Container…

如何在Linux系统中使用SSH Key认证进行无密码登录

如何在Linux系统中使用SSH Key认证进行无密码登录 SSH Key认证简介 安装SSH 在Debian/Ubuntu系统中检查 在CentOS/RHEL系统中检查 生成SSH密钥 复制公钥到远程服务器 配置SSH服务端 编辑SSH配置文件 重启SSH服务 测试无密码登录 SSH Key认证的高级配置 设置密钥的权限 限制密…

开发流程初学者指南——需求分析

目录 从零开始理解需求分析什么是需求分析&#xff1f;需求分析的目标需求分析的基本原则需求分析的各个阶段需求分析的常用方法和工具编写需求文档总结 从零开始理解需求分析 需求分析是软件开发过程中不可或缺的一环&#xff0c;它帮助我们明确用户的需求&#xff0c;确保最…

MySQL Workbench工作台汉化

一、下载汉化包 通过百度网盘分享的文件&#xff1a;MySQL汉化包.rar 链接&#xff1a;https://pan.baidu.com/s/1PaJSU9dvVnQQWEESHSue5Q 二、汉化过程 注意&#xff1a;替换之前一定要记得把两个文件复制出来存着&#xff0c;防止替换失败修改了文件 找到MySQL的工作台da…

AI数字人应用场景超全解析(下)

​​一、AI数字人技术发展趋势 1、技术迭代与创新 AI数字人技术的迅猛进步&#xff0c;得益于人工智能、计算机图形学、动作捕捉及3D建模等领域的突破性进展。深度学习算法的优化&#xff0c;让AI数字人的语言理解和生成能力愈发自然&#xff0c;能够提供更加精准和个性化的交…

实战-任意文件下载

实战-任意文件下载 1、开局 开局一个弱口令&#xff0c;正常来讲我们一般是弱口令或者sql&#xff0c;或者未授权 那么这次运气比较好&#xff0c;直接弱口令进去了 直接访问看看有没有功能点&#xff0c;正常做测试我们一定要先找功能点 发现一个文件上传点&#xff0c;不…