高翔【自动驾驶与机器人中的SLAM技术】学习笔记(十二)拓展图优化库g2o(一)框架

news2025/1/16 7:58:34

【转载】理解图优化,一步步带你看懂g2o框架

文章来源:理解图优化,一步步带你看懂g2o框架

小白:师兄师兄,最近我在看SLAM的优化算法,有种方法叫“图优化”,以前学习算法的时候还有一个优化方法叫“凸优化”,这两个不是一个东西吧?

师兄:哈哈,这个问题有意思,虽然它们中文发音一样,但是意思差别大着呢!我们来看看英文表达吧,图优化的英文是 graph optimization 或者 graph-based optimization,你看,它的“图”其实是数据结构中的graph。而凸优化的英文是 convex optimization,这里的“凸”其实是凸函数的意思,所以单从英文就能区分开它们。

小白:原来是这样,我看SLAM中图优化用的很多啊,我看了一下高博的书,还是迷迷糊糊的,求科普啊师兄

师兄:图优化真的蛮重要的,概念其实不复杂,主要是编程稍微有点复杂。。

小白:不能同意更多。。,那个代码看的我一脸懵逼。

一、图优化有什么优势?

师兄:按照惯例,我还是先说说图优化的背景吧。

  • SLAM的后端一般分为两种处理方法,

    • 一种是以扩展卡尔曼滤波(EKF)为代表的滤波方法,

    • 一种是以图优化为代表的非线性优化方法。

  • 不过,目前SLAM研究的主流热点几乎都是基于图优化的。

小白:据我所知,滤波方法很早就有了,前人的研究也很深。为什么现在图优化变成了主流了?

师兄:你说的没错。滤波方法尤其是EKF方法,在SLAM发展很长的一段历史中一直占据主导地位,早期的大神们研究了各种各样的滤波器来改善滤波效果,那会入门SLAM,EKF是必须要掌握的。顺便总结下滤波方法的优缺点

  • 优点:在当时计算资源受限、待估计量比较简单的情况下,EKF为代表的滤波方法比较有效,经常用在激光SLAM中。

  • 缺点:它的一个大缺点就是存储量和状态量是平方增长关系,因为存储的是协方差矩阵,因此不适合大型场景。而现在基于视觉的SLAM方案,路标点(特征点)数据很大,滤波方法根本吃不消,所以此时滤波的方法效率非常低。

小白:原来如此。那图优化在视觉SLAM中效率很高吗?

师兄:这个其实说来话长了。很久很久以前,其实就是不到十年前吧(感觉好像很久),大家还都是用滤波方法,因为在图优化里,Bundle Adjustment(后面简称BA)起到了核心作用。但是那会SLAM的研究者们发现包含大量特征点和相机位姿的BA计算量其实很大,根本没办法实时。

小白:啊?后来发生了什么?(认真听故事ing)

师兄:后来SLAM研究者们发现了其实在视觉SLAM中,虽然包含大量特征点和相机位姿,但其实BA是稀疏的,稀疏的就好办了,就可以加速了啊!比较代表性的就是2009年,几个大神发表了自己的研究成果《SBA:A software package for generic sparse bundle adjustment》,而且计算机硬件发展也很快,因此基于图优化的视觉SLAM也可以实时了!

小白:厉害厉害!向大牛们致敬!

二、图优化是什么?

小白:图优化既然是主流,那我可以跳过滤波方法直接学习图优化吧,反正滤波方法也看不懂。。

师兄:额,图优化确实是主流,以后有需要你可以再去看滤波方法,那我们今天就只讲图优化好啦

小白:好滴,那问题来了,究竟什么是图优化啊?

师兄:图优化里的图就是数据结构里的图,一个图由若干个顶点(vertex),以及连接这些顶点的边(edge)组成,给你举个例子

  • 比如一个机器人在房屋里移动,它在某个时刻 t 的位姿(pose)就是一个顶点,这个也是待优化的变量。而位姿之间的关系就构成了一个边,比如时刻 t 和时刻 t+1 之间的相对位姿变换矩阵就是边边通常表示误差项

在SLAM里,图优化一般分解为两个任务:

1、构建图。机器人位姿作为顶点位姿间关系作为边

2、优化图。调整机器人的位姿(顶点)来尽量满足边的约束,使得误差最小

下面就是一个直观的例子。我们根据机器人位姿来作为图的顶点,这个位姿可以来自机器人的编码器,也可以是ICP匹配得到的,图的边就是位姿之间的关系。由于误差的存在,实际上机器人建立的地图是不准的,如下图左。我们通过设置边的约束,使得图优化向着满足边约束的方向优化,最后得到了一个优化后的地图(如下图中所示),它和真正的地图(下图右)非常接近。

小白:哇塞,这个图优化效果这么明显啊!刚开始误差那么大,最后都校正过来了

师兄:是啊,所以图优化在SLAM中举足轻重啊,一定得掌握

小白:好,有学习的动力了!我们开启编程模式吧!


三、先了解g2o 框架

师兄:前面我们简单介绍了图优化,你也看到了它的神通广大,那如何编程实现呢?

小白:对啊,有没有现成的库啊,我还只是个“调包侠”。。

师兄:这个必须有啊!在SLAM领域,基于图优化的一个用的非常广泛的库就是g2o,它是General Graphic Optimization 的简称,是一个用来优化非线性误差函数的c++框架。这个库可以满足你调包侠的梦想~

小白:哈哈,太好了,否则打死我也写不出来啊!那这个g2o怎么用呢?

师兄:我先说安装吧,其实g2o安装很简单,参考GitHub上官网:GitHub - RainerKuemmerle/g2o: g2o: A General Framework for Graph Optimization按照步骤来安装就行了。需要注意的是安装之前确保电脑上已经安装好了第三方依赖。

小白:好的,这个看起来很好装。不过问题是,我看相关的代码,感觉很复杂啊,不知如何下手啊

师兄:别急,第一次接触g2o,确实有这种感觉,而且官网文档写的也比较“不通俗不易懂”,不过如果你能捋顺了它的框架,再去看代码,应该很快能够入手了

小白:是的,先对框架了然于胸才行,不然即使能凑合看懂别人代码,自己也不会写啊!

师兄:嗯嗯,其实g2o帮助我们实现了很多内部的算法,只是在进行构造的时候,需要遵循一些规则,在我看来这是可以接受的,毕竟一个程序不可能满足所有的要求,因此在以后g2o的使用中还是应该多看多记,这样才能更好的使用这个库。

小白:记住了。养成记笔记的好习惯,还要多练习。

师兄:好,那我们首先看一下下面这个图,是g2o的基本框架结构。如果你查资料的话,你会在很多地方都能看到。看图的时候要注意箭头类型

1、图的核心

小白:师兄,这个图该从哪里开始看?感觉好多东西。。

师兄:如果你想要知道这个图中哪个最重要,就去看看箭头源头在哪里

小白:我看看。。。好像是最左侧的SparseOptimizer

师兄:对的,SparseOptimizer是整个图的核心,我们注意右上角的 is-a 实心箭头,这个SparseOptimizer它是一个Optimizable Graph,从而也是一个超图(HyperGraph)。

小白:我去,师兄,怎么突然冒出来这么多奇怪的术语,都啥意思啊?

师兄:这个你不需要一个个弄懂,不然可能黄花菜都凉了。你先暂时只需要了解一下它们的名字,有些以后用不到,有些以后用到了再回看。目前如果遇到重要的我会具体解释。

小白:好。那下一步看哪里?

2、顶点和边

师兄:我们先来看上面的结构吧。注意看 has-many 箭头,你看这个超图包含了许多顶点(HyperGraph::Vertex)和(HyperGraph::Edge)。而这些顶点顶点继承自 Base Vertex,也就是OptimizableGraph::Vertex,而边可以继承自 BaseUnaryEdge(单边), BaseBinaryEdge(双边)或BaseMultiEdge(多边),它们都叫做OptimizableGraph::Edge

小白:头有点晕了,师兄

师兄:哈哈,不用一个个记,现阶段了解这些就行。顶点和边在编程中很重要的,关于顶点和边的定义我们以后会详细说的。下面我们来看底部的结构。

小白:嗯嗯,知道啦!

3、配置SparseOptimizer的优化算法和求解器

师兄:你看下面,整个图的核心SparseOptimizer 包含一个优化算法(OptimizationAlgorithm)的对象。OptimizationAlgorithm是通过OptimizationWithHessian 来实现的。其中迭代策略可以从Gauss-Newton(高斯牛顿法,简称GN), Levernberg-Marquardt(简称LM法), Powell's dogleg 三者中间选择一个(我们常用的是GN和LM

小白:GN和LM就是我们以前讲过的非线性优化方法中常用的两种吧 师兄:是的,如果不了解的话具体看《从零开始学习「张氏相机标定法」(四)优化算法前传》《从零开始学习「张氏相机标定法」(五)优化算法正传》这两篇文章。

4、如何求解

师兄:那么如何求解呢?OptimizationWithHessian 内部包含一个求解器(Solver),这个Solver实际是由一个BlockSolver组成的。这个BlockSolver有两个部分,一个是SparseBlockMatrix ,用于计算稀疏的雅可比和Hessian矩阵;一个是线性方程的求解器(LinearSolver),它用于计算迭代过程中最关键的一步HΔx=−b,LinearSolver有几种方法可以选择:PCG, CSparse, Choldmod,具体定义后面会介绍

到此,就是上面图的一个简单理解。

四、一步步带你看懂g2o编程流程

小白:师兄,看完了我也不知道编程时具体怎么编呢!

师兄:我正好要说这个。首先这里需要说一下,我们梳理是从顶层到底层,但是编程实现时需要反过来,像建房子一样,从底层开始搭建框架一直到顶层。g2o的整个框架就是按照下图中我标的这个顺序来写的。

高博在十四讲中g2o求解曲线参数的例子来说明,源代码地址

Sign in to GitHub · GitHubGitHub is where people build software. More than 100 million people use GitHub to discover, fork, and contribute to over 420 million projects.icon-default.png?t=O83Ahttps://github.com/gaoxiang12/slambook/edit/master/ch6/g2o_curve_fitting/main.cpp

为了方便理解,我重新加了注释。如下所示,

这部分代码,在后面有新的的补充,转载原文未详细说明】【详情见第六部分

typedef g2o::BlockSolver< g2o::BlockSolverTraits<3,1> > Block;  // 每个误差项优化变量维度为3,误差值维度为1
​
// 第1步:创建一个线性求解器LinearSolver
Block::LinearSolverType* linearSolver = new g2o::LinearSolverDense<Block::PoseMatrixType>(); 
​
// 第2步:创建BlockSolver。并用上面定义的线性求解器初始化
Block* solver_ptr = new Block( linearSolver );      
​
// 第3步:创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg( solver_ptr );
​
// 第4步:创建终极大boss 稀疏优化器(SparseOptimizer)
g2o::SparseOptimizer optimizer;     // 图模型
optimizer.setAlgorithm( solver );   // 设置求解器
optimizer.setVerbose( true );       // 打开调试输出
​
// 第5步:定义图的顶点和边。并添加到SparseOptimizer中
CurveFittingVertex* v = new CurveFittingVertex(); //往图中增加顶点
v->setEstimate( Eigen::Vector3d(0,0,0) );
v->setId(0);
optimizer.addVertex( v );
for ( int i=0; i<N; i++ )    // 往图中增加边
{
  CurveFittingEdge* edge = new CurveFittingEdge( x_data[i] );
  edge->setId(i);
  edge->setVertex( 0, v );                // 设置连接的顶点
  edge->setMeasurement( y_data[i] );      // 观测数值
  edge->setInformation( Eigen::Matrix<double,1,1>::Identity()*1/(w_sigma*w_sigma) ); // 信息矩阵:协方差矩阵之逆
  optimizer.addEdge( edge );
}
​
// 第6步:设置优化参数,开始执行优化
optimizer.initializeOptimization();
optimizer.optimize(100);

结合上面的流程图和代码。下面一步步解释具体步骤。

1、创建一个线性求解器LinearSolver

我们要求的增量方程的形式是:H△X=-b,通常情况下想到的方法就是直接求逆,也就是△X=-H.inv*b。看起来好像很简单,但这有个前提,就是H的维度较小,此时只需要矩阵的求逆就能解决问题。但是当H的维度较大时,矩阵求逆变得很困难,求解问题也变得很复杂。

小白:那有什么办法吗?

师兄:办法肯定是有的。此时我们就需要一些特殊的方法对矩阵进行求逆,你看下图是GitHub上g2o相关部分的代码

如果你点进去看,可以分别查看每个方法的解释,如果不想挨个点进去看,看看下面我的总结就行了

LinearSolverCholmod :使用sparse cholesky分解法。继承自LinearSolverCCS
LinearSolverCSparse:使用CSparse法。继承自LinearSolverCCS
LinearSolverPCG :使用preconditioned conjugate gradient 法,继承自LinearSolver
LinearSolverDense :使用dense cholesky分解法。继承自LinearSolver
LinearSolverEigen: 依赖项只有eigen,使用eigen中sparse Cholesky 求解,因此编译好后可以方便的在其他地方使用,性能和CSparse差不多。继承自LinearSolver

2、创建BlockSolver。并用上面定义的线性求解器初始化。

BlockSolver 内部包含 LinearSolver,用上面我们定义的线性求解器LinearSolver来初始化。它的定义在如下文件夹内:

g2o/g2o/core/block_solver.h

你点进去会发现 BlockSolver有两种定义方式

一种是指定的固定变量的solver,我们来看一下定义

 using BlockSolverPL = BlockSolver< BlockSolverTraits<p, l> >;

其中p代表pose的维度(注意一定是流形manifold下的最小表示),l表示landmark的维度

另一种是可变尺寸的solver,定义如下

using BlockSolverX = BlockSolverPL<Eigen::Dynamic, Eigen::Dynamic>;

小白:为何会有可变尺寸的solver呢?

师兄:这是因为在某些应用场景,我们的Pose和Landmark在程序开始时并不能确定,那么此时这个块状求解器就没办法固定变量,此时使用这个可变尺寸的solver,所有的参数都在中间过程中被确定

另外你看block_solver.h的最后,预定义了比较常用的几种类型,如下所示:

BlockSolver_6_3 :表示pose 是6维,观测点是3维。用于3D SLAM中的BA
BlockSolver_7_3:在BlockSolver_6_3 的基础上多了一个scale
BlockSolver_3_2:表示pose 是3维,观测点是2维

以后遇到了知道这些数字是什么意思就行了

3、创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化

我们来看g2o/g2o/core/ 目录下,发现Solver的优化方法有三种:分别是高斯牛顿(GaussNewton)法,LM(Levenberg–Marquardt)法、Dogleg法,如下图所示,也和前面的图相匹配

小白:师兄,上图最后那个OptimizationAlgorithmWithHessian 是干嘛的?

师兄:你点进去 GN、 LM、 Doglet算法内部,会发现他们都继承自同一个类:OptimizationWithHessian,如下图所示,这也和我们最前面那个图是相符的

然后,我们点进去看 OptimizationAlgorithmWithHessian,发现它又继承自OptimizationAlgorithm,这也和前面的相符

总之,在该阶段,我们可以选则三种方法:

g2o::OptimizationAlgorithmGaussNewton
g2o::OptimizationAlgorithmLevenberg 
g2o::OptimizationAlgorithmDogleg 

4、创建终极大boss 稀疏优化器(SparseOptimizer),并用已定义求解器作为求解方法。

创建稀疏优化器

g2o::SparseOptimizer    optimizer;

用前面定义好的求解器作为求解方法:

SparseOptimizer::setAlgorithm(OptimizationAlgorithm* algorithm)

其中setVerbose是设置优化过程输出信息用的,打开调试输出。

SparseOptimizer::setVerbose(bool verbose)

不信我们来看一下它的定义

5、定义图的顶点和边。并添加到SparseOptimizer中。

这部分比较复杂,我们下一次再介绍。后面两个文章:边和顶点。

6、设置优化参数,开始执行优化。

设置SparseOptimizer的初始化、迭代次数、保存结果等。

初始化

SparseOptimizer::initializeOptimization(HyperGraph::EdgeSet& eset)

设置迭代次数,然后就开始执行图优化了。

SparseOptimizer::optimize(int iterations, bool online)

小白:终于搞明白g2o流程了!谢谢师兄!必须给你个「好看」啊!

注:以上内容部分参考了如下文章,感谢原作者:

g2o学习笔记 - 简书

graph slam tutorial : 从推导到应用1-CSDN博客

五、讨论

我们知道(不知道的话,去查一下十四讲)用g2o和ceres库都能用来进行BA优化,这两者在使用过程中有什么不同?



转载内容结束分界线



六、对代码的补充理解

上文中,第四部分中,提到了高翔十四讲中的代码,这部分代码查阅原书,整理补充如下。

首先代码来源:第六章6.3节:《实践:曲线拟合问题》。作者通过一个曲线拟合的例子来讲解如何求解最小二乘问题。

假设一条曲线的方程:

y = exp(ax^2+bx + c) +w

a,b,c为曲线的参数,也就是我们要求解的待拟合的曲线参数。w是高斯噪声。满足w\sim (0,\sigma ^2)

当前有N个关于x,y的观测数据点。用N个数据点拟合求出曲线的参数。

那么最小二乘问题的目标函数如下:

\min_{a,b,c}\frac{1}{2}\sum_{i=1}^{N}\left\|y_{i}-\exp\left(ax_{i}^{2}+bx_{i}+c\right)\right\|^{2}.

 

 误差定义为:实测值与估计参数计算值之差。

目标:这个估计参数使得所有点的误差和最小。

误差e相对于状态变量(a,b,c)的导数,以及雅可比矩阵

注意这个 (6.39和6.40),编程代码中,要用到。使用代码如下:

  // 计算曲线模型误差
  virtual void computeError() override {
    const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);
    const Eigen::Vector3d abc = v->estimate();
    _error(0, 0) = _measurement - std::exp(abc(0, 0) * _x * _x + abc(1, 0) * _x + abc(2, 0));   // 公式6.39
  }

  // 计算雅可比矩阵
  virtual void linearizeOplus() override {
    const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);
    const Eigen::Vector3d abc = v->estimate(); 
    // 公式6.40求各个误差项对状态变量的导数。进而构建雅可比矩阵。
    double y = exp(abc[0] * _x * _x + abc[1] * _x + abc[2]);  // 公式6.40中,公共部分。
    _jacobianOplusXi[0] = -_x * _x * y; 
    _jacobianOplusXi[1] = -_x * y;
    _jacobianOplusXi[2] = -y;
  }

 

#include <iostream>
#include <g2o/core/g2o_core_api.h>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/core/optimization_algorithm_gauss_newton.h>
#include <g2o/core/optimization_algorithm_dogleg.h>
#include <g2o/solvers/dense/linear_solver_dense.h>
#include <Eigen/Core>
#include <opencv2/core/core.hpp>
#include <cmath>
#include <chrono>

using namespace std;

// 曲线模型的顶点,模板参数:优化变量维度和数据类型
class CurveFittingVertex : public g2o::BaseVertex<3, Eigen::Vector3d> {
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW

  // 重置
  virtual void setToOriginImpl() override {
    _estimate << 0, 0, 0;
  }

  // 更新
  virtual void oplusImpl(const double *update) override {
    _estimate += Eigen::Vector3d(update);
  }

  // 存盘和读盘:留空
  virtual bool read(istream &in) {}

  virtual bool write(ostream &out) const {}
};

// 误差模型 模板参数:观测值维度,类型,连接顶点类型
class CurveFittingEdge : public g2o::BaseUnaryEdge<1, double, CurveFittingVertex> {
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW

  CurveFittingEdge(double x) : BaseUnaryEdge(), _x(x) {}

  // 计算曲线模型误差
  virtual void computeError() override {
    const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);
    const Eigen::Vector3d abc = v->estimate();
    _error(0, 0) = _measurement - std::exp(abc(0, 0) * _x * _x + abc(1, 0) * _x + abc(2, 0));   // 公式6.39
  }

  // 计算雅可比矩阵
  virtual void linearizeOplus() override {
    const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);
    const Eigen::Vector3d abc = v->estimate(); 
    // 公式6.40求各个误差项对状态变量的导数。进而构建雅可比矩阵。
    double y = exp(abc[0] * _x * _x + abc[1] * _x + abc[2]);  // 公式6.40中,公共部分。
    _jacobianOplusXi[0] = -_x * _x * y; 
    _jacobianOplusXi[1] = -_x * y;
    _jacobianOplusXi[2] = -y;
  }

  virtual bool read(istream &in) {}

  virtual bool write(ostream &out) const {}

public:
  double _x;  // x 值, y 值为 _measurement
};

int main(int argc, char **argv) {
  double ar = 1.0, br = 2.0, cr = 1.0;         // 真实参数值
  double ae = 2.0, be = -1.0, ce = 5.0;        // 估计参数值
  int N = 100;                                 // 数据点
  double w_sigma = 1.0;                        // 噪声Sigma值
  double inv_sigma = 1.0 / w_sigma;
  cv::RNG rng;                                 // OpenCV随机数产生器

  vector<double> x_data, y_data;      // 数据
  for (int i = 0; i < N; i++) {
    double x = i / 100.0;
    x_data.push_back(x);
    y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));
  }

  // 构建图优化,先设定g2o
  typedef g2o::BlockSolver<g2o::BlockSolverTraits<3, 1>> BlockSolverType;  // 每个误差项优化变量维度为3,误差值维度为1
  typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型

  // 梯度下降方法,可以从GN, LM, DogLeg 中选
  auto solver = new g2o::OptimizationAlgorithmGaussNewton(
    g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
  g2o::SparseOptimizer optimizer;     // 图模型
  optimizer.setAlgorithm(solver);   // 设置求解器
  optimizer.setVerbose(true);       // 打开调试输出

  // 往图中增加顶点
  CurveFittingVertex *v = new CurveFittingVertex();
  v->setEstimate(Eigen::Vector3d(ae, be, ce));
  v->setId(0);
  optimizer.addVertex(v);

  // 往图中增加边
  for (int i = 0; i < N; i++) {
    CurveFittingEdge *edge = new CurveFittingEdge(x_data[i]);
    edge->setId(i);
    edge->setVertex(0, v);                // 设置连接的顶点
    edge->setMeasurement(y_data[i]);      // 观测数值
    edge->setInformation(Eigen::Matrix<double, 1, 1>::Identity() * 1 / (w_sigma * w_sigma)); // 信息矩阵:协方差矩阵之逆
    optimizer.addEdge(edge);
  }

  // 执行优化
  cout << "start optimization" << endl;
  chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
  optimizer.initializeOptimization();
  optimizer.optimize(10);
  chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
  chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "solve time cost = " << time_used.count() << " seconds. " << endl;

  // 输出优化值
  Eigen::Vector3d abc_estimate = v->estimate();
  cout << "estimated model: " << abc_estimate.transpose() << endl;

  return 0;
}

代码中,基于g2o中边和点的类,继承和构建了自己曲线拟合的顶点和边。并在点中,重写了虚类中对顶点的重置和更新(对状态的重置和更新),也重写了边即误差模型的计算方法和雅可比矩阵计算方法。

主函数中,逻辑也比较清晰:

1、用真实参数加上噪声构建观测数据。

2、搭建g2o的框架,构建过程如上描述。构建一个超图架子。

3、然后超图中,增加顶点(待优化参数),增加边(每个观测数据产生一个误差模型)。

4、执行优化,记录时间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2225599.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring Web MVC 入门

1. 什么是 Spring Web MVC Spring Web MVC 是基于 Servlet API 构建的原始 Web 框架&#xff0c;从从⼀开始就包含在Spring框架中。它的 正式名称“SpringWebMVC”来⾃其源模块的名称(Spring-webmvc)&#xff0c;但它通常被称为"Spring MVC". 什么是Servlet呢? Ser…

OpenAI被爆12月发布其Orion AI模型!波兰“OFF”电台解雇所有记者,启用AI“主持人”|AI日报

文章推荐 Stability AI一口气推出3款图像生成模型系列&#xff01;升级版Claude 3.5 Sonnet能像人类一样操控电脑&#xff5c;AI日报 今日热点 据报道&#xff0c;OpenAI计划于12月发布其Orion AI模型 据The Verge昨日报道&#xff0c;OpenAI计划在今年12月之前发布其下一个…

ctfshow(171,172,173)--SQL注入--联合注入

Web171 进入靶场&#xff0c;是一个SQL查询界面&#xff1a; 审计&#xff1a; 查询语句如下&#xff1a; $sql "select username,password from user where username !flag and id ".$_GET[id]." limit 1;";语句功能从数据表user中查询username,pa…

MATLAB生态环境数据处理与分析

原文链接&#xff1a;MATLAB在生态环境数据处理与分析https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247624407&idx4&sn39c8119bba0797e6bf5cc35eea1c6767&chksmfa8da730cdfa2e266dac5221af101230d7ded29576a34856b31f736a89dbb2e3e481a5e94e8a&to…

日常笔记记录

1、Http 1.1 概念 HTTP 是 HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09;的简写&#xff0c;它是 TCP/IP 协议集中的一个应用层协议&#xff0c;是客户端与服务端进行交互时必须遵循的规则。它用于定义 Web 浏览器与 Web 服务器之间交换数据的过程以及…

【Docker】在AlmaLinux 8.10系统中安装Docker-ce过程分享

随着2024年6月30日&#xff0c;官方停止了对CentOS 7的维护&#xff0c;属于CentOS 7的时代终于结束了。当然&#xff0c;对于CentOS 7的维护停止&#xff0c;大家也不用过度紧张&#xff0c;目前仍有部分Linux版本可以提供企业级的生产可用系统服务&#xff0c;比如&#xff1…

Python记录-字典

定义 Python 中的字典&#xff08;dictionary&#xff09;是一种内置的数据结构&#xff0c;用于存储键值对&#xff08;key-value pairs&#xff09;。字典中的每个键&#xff08;key&#xff09;都是唯一的&#xff0c;并且与一个值&#xff08;value&#xff09;相关联。键…

vue3学习(二)一款优秀的编辑器

开源项目&#xff1a; https://github.com/Leecason/element-tiptap doc需要改成document&#xff0c;改完之后依然有问题&#xff0c;应该是对vue3兼容不好&#xff0c; 所以在issue中有人回复使用 https://github.com/okijhhyu/element-tiptap-vue3 经过测试&#xff0c;确实…

shiro会话管理和加密

Shiro 会话管理和加密 会话管理 缓存 加密 会话管理 Shiro提供了完整的企业级会话管理功能&#xff0c;不依赖于底层容器&#xff08;如Tomcat&#xff09;&#xff0c;不管是J2SE还是J2EE环境都可以使用&#xff0c;提供了会话管理&#xff0c;会话事件监听&#xff0c;会话存…

【自动化测试之oracle数据库】MacOs如何安装oracle- client

操作系统为Mac OS&#xff0c;本地在pycharm上跑自动化脚本时&#xff0c;因为有操作oracle数据库的部分&#xff0c;所以需要安装oracle数据库的客户端&#xff0c;并install cx_oracle,本文主要介绍如何在macOS上完成安装&#xff0c;并在python自动化测试代码中配置&#xf…

vue3项目中引入阿里图标库

开篇 本篇的主题是在vue3项目中引入阿里图标库 步骤 注册阿里图标库账号(阿里图标)&#xff0c;并创建项目 将图标加入项目中 将需要的图标先加入购物车&#xff0c;随后加入到项目中 生成项目代码 在项目中生成项目代码&#xff0c;便于后续复制到vue项目中 ## 在vue3项目…

信息安全入门——网络安全威胁

目录 前言网络安全威胁概览悄无声息的数据泄露——被动攻击明目张胆的破坏行为——主动攻击网路世界的瘟疫——病毒总结 前言 在数字化时代&#xff0c;信息安全成为了我们每个人都不得不面对的重要议题。网络安全威胁无处不在&#xff0c;它们可能来自网络的暗角&#xff0c;…

MySQL 9从入门到性能优化-慢查询日志

【图书推荐】《MySQL 9从入门到性能优化&#xff08;视频教学版&#xff09;》-CSDN博客 《MySQL 9从入门到性能优化&#xff08;视频教学版&#xff09;&#xff08;数据库技术丛书&#xff09;》(王英英)【摘要 书评 试读】- 京东图书 (jd.com) MySQL9数据库技术_夏天又到了…

【51单片机】第一个小程序 —— 点亮LED灯

学习使用的开发板&#xff1a;STC89C52RC/LE52RC 编程软件&#xff1a;Keil5 烧录软件&#xff1a;stc-isp 开发板实图&#xff1a; 文章目录 单片机介绍LED灯介绍练习创建第一个项目点亮LED灯LED周期闪烁 单片机介绍 单片机&#xff0c;英文Micro Controller Unit&#xff0…

信息安全工程师(68)可信计算技术与应用

前言 可信计算技术是一种计算机安全体系结构&#xff0c;旨在提高计算机系统在面临各种攻击和威胁时的安全性和保密性。 一、可信计算技术的定义与原理 可信计算技术通过包括硬件加密、受限访问以及计算机系统本身的完整性验证等技术手段&#xff0c;确保计算机系统在各种攻击和…

力扣hot100-->递归/回溯

递归/回溯 1. 17. 电话号码的字母组合 中等 给定一个仅包含数字 2-9 的字符串&#xff0c;返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下&#xff08;与电话按键相同&#xff09;。注意 1 不对应任何字母。 示例 1&#xff1a; 输入&…

c语言中整数在内存中的存储

整数的二进制表示有三种&#xff1a;原码&#xff0c;反码&#xff0c;补码 有符号的整数&#xff0c;三种表示方法均有符号位和数值位两部分&#xff0c;符号位都是用‘0’表示“正&#xff0c;用1表示‘负’ 最高位的以为被当作符号位&#xff0c;剩余的都是数值位。 整数…

智慧旅游微信小程序平台

作者介绍&#xff1a;✌️大厂全栈码农|毕设实战开发&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。 &#x1f345;获取源码联系方式请查看文末&#x1f345; 推荐订阅精彩专栏 &#x1f447;&#x1f3fb; 避免错过下次更新 Springboot项目精选实战案例 更多项目…

Vue3.js - 数据代理方法

1. Vue导入 最简单的方式&#xff0c;通过联网接入Vue3的接口 <script type"text/javascript" src"https://unpkg.com/vue3"></script> 2. Vue实例 2.1 创建Vue实例 const vm Vue.createApp({}) 使用Vue中的createApp方法创建对应实例&a…

115页PPT华为管理变革:制度创新与文化塑造的核心实践

集成供应链&#xff08;ISC&#xff09;体系 集成供应链&#xff08;ISC&#xff09;体系是英文Integrated Supply Chain的缩写&#xff0c;是一种先进的管理思想&#xff0c;它指的是由相互间提供原材料、零部件、产品和服务的供应商、合作商、制造商、分销商、零售商、顾客等…