Python实现贝叶斯优化器(Bayes_opt)优化简单循环神经网络回归模型(SimpleRNN回归算法)项目实战

news2025/1/15 23:26:36

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后关注获取。

1.项目背景

贝叶斯优化器 (BayesianOptimization) 是一种黑盒子优化器,用来寻找最优参数。

贝叶斯优化器是基于高斯过程的贝叶斯优化,算法的参数空间中有大量连续型参数,运行时间相对较短。

贝叶斯优化器目标函数的输入必须是具体的超参数,而不能是整个超参数空间,更不能是数据、算法等超参数以外的元素。

本项目使用基于贝叶斯优化器(Bayes_opt)优化简单循环神经网络回归算法来解决回归问题。 

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:   

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:     

4.探索性数据分析

4.1 y变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-600~600之间。

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。 

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

5.3 数据样本增维

为满足循环神经网络模型的数据输入要求,需要增加1个维度。

增加维度维度后的训练集与测试集样本形状:

6.构建贝叶斯优化器优化SimpleRNN回归模型

主要使用基于贝叶斯优化器优化SimpleRNN回归算法,用于目标回归。 

6.1 构建调优模型

编号

模型名称

调优参数

1

SimpleRNN回归模型

units

2

epochs

6.2 最优参数展示

寻优的过程信息:

最优参数结果展示:

6.3 最优参数构建模型 

编号

模型名称

调优参数

1

SimpleRNN回归模型

units=int(params_best['units'])

2

epochs=int(params_best['epochs'])

训练过程信息:

模型的摘要信息:

模型的网络结构信息:

损失曲线图展示:  

7.模型评估 

7.1 评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

模型名称

指标名称

指标值

测试集

SimpleRNN回归模型

  R方

0.9802

均方误差

738.408

可解释方差值

0.9873

平均绝对误差

 21.5314

从上表可以看出,R方0.9802,为模型效果较好。

关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。   

8.结论与展望

综上所述,本文采用了贝叶斯优化器优化简单循环神经网络SimpleRNN回归模型算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2225471.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C#使用开源库EasyModbusTCP跟PLC进行通讯开发步骤

使用C#进行非标自动化系统开发一般涉及的知识包含后台、前台、手持终端、客户端软件等功能模块的开发,其中后台程序连接数据库,而前台Vue界面,手持终端Android程序,客户端C#软件都会跟后台接口程序进行数据交换。 本文主要讨论C#客…

基于知识图谱的紧急事故决策辅助系统

现代社会紧急事故频发,而处理这些突发事件的效率直接决定了后续影响的大小。这时候,数据智能的解决方案会显得尤为重要!今天为大家分享一个用【知识图谱】技术驱动的紧急事故决策辅助系统,不仅能帮助你快速处理事故信息&#xff0…

当有违法数据时,浏览器不解析,返回了undefined,导致数据不解析

现象:页面上没有看到数据 排查:断点到线上的源码里:1、协议回调确实没有拿到数据是个undefined 2、network里看服务确实响应了数据 3、控制台没有任何报错。 心情:莫名其妙的现象 我本地有json格式化工具,copy进去后&…

STM32硬件平台

STM32 系列是 STMicroelectronics 设计的高度灵活、广泛应用的微控制器(MCU)系列,支持从低功耗应用到高性能处理的需求,适用于工业、汽车、消费电子和物联网等广泛领域。STM32 系列具有广泛的硬件种类和丰富的功能,以下…

uniapp 引入了uview-ui后,打包错误,主包过大解决方案

原因:由于使用uniapp来设计小程序,使用uview的组件库,导致了主包过大,无法打包 前提条件:已经完成了分包,如果还没有分包的先分包,需要上传代码时用到 1. 通常情况,大多数都是通过点…

VUE3实现古典音乐网站源码模板

文章目录 1.设计来源1.1 网站首页页面1.2 古典音乐页面1.3 著名人物页面1.4 古典乐器页面1.5 历史起源页面1.6 登录页面1.7 注册页面 2.效果和源码2.1 动态效果2.2 目录结构 源码下载万套模板,程序开发,在线开发,在线沟通 作者:xc…

MIT 6.824 Lab1记录

MapReduce论文阅读 1. 编程模型 Map 函数(kv -> kv) Map 函数将输入的键值对处理为一系列中间值(键值对),并将所有的中间结果传递给 Reduce 处理。 map(String key, String value):// key: document name// val…

PHP员工管理系统小程序

💼高效管理,从“员工管理系统”开始💼 📋【一键录入,信息整合】📋 你是否还在为整理员工信息而手忙脚乱?纸质档案易丢失、电子表格易混乱,这些问题在“员工管理系统”面前都将迎刃…

如何使用ssm实现电商扶贫平台网站

TOC 10929ssm电商扶贫平台网站 第1章 绪论 1.1背景及意义 系统管理也都将通过计算机进行整体智能化操作,对于电商扶贫平台网站 所牵扯的管理及数据保存都是非常多的,例如管理员;首页、个人中心、商品分类管理、热门商品管理、用户管理、系…

Android 应用申请 Google MBA权限

​ Google Case链接:89 > 34810 > 30025 > 155353 > Handheld > MBA Policies 按照指引填写模板 This bug is for the approval of MBAs under [13.2.2 Pregrant permissions policy](https://docs.partner.android.com/gms/policies/domains/mba#m…

DS3231时钟芯片全解析——概况,性能,MCU连接,样例代码

DS3231概述: 数据: DS3231是一个超高精度I2C实时时钟芯片,带有集成的温度补偿晶振。误差范围:温度范围为0摄氏度到40摄氏度(2PPM),温度范围为-40摄氏度到85摄氏度(3.5PPM&#xff0c…

栈和队列-栈的练习题

1. 逆波兰表达式 题目: 给出一个算数式的后缀表达式,我们来求他最后算数值. 在解题之前我们来认识一下中缀表达式,和后缀表达式(逆波兰表达式 我们在写数学遇到的那种形式的算数表达式就是中缀表达式,我们要从中缀表达式变为后缀表达式(逆波兰式),计算机时不知道式子的计算…

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-25

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-25 0. 前言 大语言模型在很多领域都有成功的应用,在本期计算机前沿技术进展研究介绍中,我们将带来一篇用大语言模型进行诺贝尔文学作品分析的论文。虽然有一定趁最近诺贝尔奖热潮的意味&…

现代数字信号处理I-极大似然估计 学习笔记

目录 1. 极大似然估计的模型介绍 2. 极大似然估计可以达到CRLB的说明 2.1 前期准备:符号定义及说明 2.2 中心极限定理 2.3 大数定理 2.4 说明思路 2.5 具体过程 说明:此部分内容在2024版本的课程中没有提供,需要参考2023之前的课程&…

R语言笔记(五):Apply函数

文章目录 一、Apply Family二、apply(): rows or columns of a matrix or data frame三、Applying a custom function四、Applying a custom function "on-the-fly"五、Applying a function that takes extra arguments六、Whats the return argument?七、Optimized…

基于贝叶斯优化的K折交叉验证BP回归模型(可预测未来数据)

基于贝叶斯优化的K折交叉验证BP回归模型(可预测未来数据) 目录 基于贝叶斯优化的K折交叉验证BP回归模型(可预测未来数据)效果一览基本介绍程序设计参考资料 效果一览 基本介绍 基于贝叶斯优化的K折交叉验证BP回归模型的多输入单一输出回归模型 Matlab版本:2020a及以…

深度学习_循环神经网络_预测平安中国股价(文末附带数据集下载链接, 长期有效, 如果有大佬愿意帮忙, 我先在这磕一个,感谢)

简介: 使用循环神经网络RNN对股价进行预测, 也就是搭建循环神经网络对中国平安的收盘股价进行预测 深度学习训练流程 1.数据集导入 2.数据预处理 3.模型训练 模型结构要求: 单层简单R…

U盘恢复数据,这四款软件你必须知道!

不管是哪个行业哪个职位,数据安全都是很重要的。比如说我认识的财务姐姐,每天处理的财务报表、客户信息、合同文件等,都必须确保万无一失,尤其是各种U盘数据。为了防止数据丢失后找不到数据的情况,今天来和大家分享四款…

智能管线巡检系统:强化巡检质量,确保安全高效运维

线路巡检质量的监控是确保线路安全、稳定运行的重要环节。为了有效监控巡检质量,采用管线巡检系统是一种高效、科学的手段。以下是对如何通过管线巡检系统实现线路巡检质量监控的详细分析: 一、巡检速度监控 管线巡检系统能够实时监控巡检人员的巡检速度…

算力引领 智慧安防| Gooxi助力安防行业智慧化转型

安防行业作为AI最为合适生长的天然场域,早在国内AI市场爆发之前就提前进行了“预演”,诞生了AI四小龙。当AIGC赋能安防技术革新,安防再次与AI浪潮撞了个满怀。在这一次大模型的浪潮中,安防场上的老玩家纷纷抢滩大模型。而今&#…