OpenCV视觉分析之运动分析(3)背景减除类:BackgroundSubtractorKNN的一系列get函数的使用

news2025/1/17 6:08:13
  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

BackgroundSubtractorKNN类有一系列的get函数,下面我们一一列举他们的名字和用法。

一系列函数

函数getDetectShadows()

getDetectShadows 是 cv::BackgroundSubtractorKNN 类中的一个方法,用于获取当前是否启用了阴影检测的功能。

函数getDist2Threshold()

getDist2Threshold 是 cv::BackgroundSubtractorKNN 类中的一个方法,用于获取当前设置的距离阈值。这个阈值用于确定前景像素与背景模型之间的距离,从而决定哪些像素被认为是前景。

函数getHistory()

getHistory 是 cv::BackgroundSubtractorKNN 类中的一个方法,用于获取当前设置的历史帧数。历史帧数决定了背景模型的更新范围,即算法用来构建背景模型的时间窗口大小。

函数getkNNSamples()

getkNNSamples 是 cv::BackgroundSubtractorKNN 类中的一个方法,用于获取当前设置的 K 近邻样本数量。这个参数决定了在背景建模过程中使用的样本数量。

函数getNSamples()

在 cv::BackgroundSubtractorKNN 类中,getNSamples() 方法用于获取当前设置的 K 近邻样本数量。这是 OpenCV 背景减除算法的一个重要参数,用于控制背景模型的鲁棒性和响应速度。

函数getShadowThreshold()

getShadowThreshold() 是 cv::BackgroundSubtractorKNN 类中的一个方法,用于获取当前设置的阴影检测阈值。这个阈值决定了在检测到可能的阴影区域时,算法如何处理这些区域。

函数getShadowValue()

getShadowValue() 是 cv::BackgroundSubtractorKNN 类中的一个方法,用于获取当前设置的阴影值。这个值决定了在输出的前景掩码中,阴影区域是如何标记的。

代码示例


#include <iostream>
#include <opencv2/opencv.hpp>

int main( int argc, char** argv )
{
    // 创建一个 BackgroundSubtractorKNN 对象
    cv::Ptr< cv::BackgroundSubtractorKNN > pBackSub = cv::createBackgroundSubtractorKNN();

    // 设置参数
    pBackSub->setHistory( 500 );         // 设置历史帧数
    pBackSub->setDist2Threshold( 16 );   // 设置距离阈值
    pBackSub->setDetectShadows( true );  // 启用阴影检测
    pBackSub->setShadowValue( 127 );     // 设置阴影值

    // 获取当前的阴影值
    int shadowValue      = pBackSub->getShadowValue();
    bool detectshadow    = pBackSub->getDetectShadows();
    double distThreshold = pBackSub->getDist2Threshold();
    int history          = pBackSub->getHistory();
    int nnsamples        = pBackSub->getkNNSamples();
    int nsamples         = pBackSub->getNSamples();
    int shadowThreshold  = pBackSub->getShadowThreshold();

    std::cout<< "Current shadow value: " << shadowValue << std::endl;
    std::cout << "Current distance threshold value: " << distThreshold << std::endl;
    std::cout << "history: " << history << std::endl;
    std::cout << "nsamples: " << nsamples << std::endl;
    std::cout << "shadow threshold: " << shadowThreshold << std::endl;
    


    // 打开视频文件
    cv::VideoCapture capture( 0 );
    if ( !capture.isOpened() )
    {
        std::cerr << "Failed to open video file." << std::endl;
        return -1;
    }

    // 读取每一帧并处理
    cv::Mat frame, fgMask;
    while ( capture.read( frame ) )
    {
        // 应用背景减除
        pBackSub->apply( frame, fgMask );

        // 显示结果
        cv::imshow( "Frame", frame );
        cv::imshow( "FG Mask", fgMask );

        // 按 'q' 键退出
        if ( cv::waitKey( 30 ) == 'q' )
        {
            break;
        }
    }

    // 释放资源
    capture.release();
    cv::destroyAllWindows();

    return 0;
}

运行结果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2225109.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CSS伪元素以及伪类和CSS特性

伪元素&#xff1a;可以理解为假标签。 有2个伪元素 &#xff08;1&#xff09;::before &#xff08;2&#xff09;::after ::before <!DOCTYPE html> <html> <head><title></title><style type"text/css">body::before{con…

使用Python Pillow库生成九宫格图片

相信很多人看到过九宫格图片&#xff0c;一张完整的大图被分割成九张小图&#xff0c;在朋友圈和微博里一度成为流行。 相比完整的大图&#xff0c;九宫格图文增添了一丝趣味和精致&#xff0c;也显得更有创意。 制作九宫格图片的工具有很多&#xff0c;下文用Python的PIL库来…

Puppeteer 与浏览器版本兼容性:自动化测试的最佳实践

Puppeteer 支持的浏览器版本映射&#xff1a;从 v20.0.0 到 v23.6.0 自 Puppeteer v20.0.0 起&#xff0c;这个强大的自动化库开始支持与 Chrome 浏览器的无头模式和有头模式共享相同代码路径&#xff0c;为自动化测试带来了更多便利。从 v23.0.0 开始&#xff0c;Puppeteer 进…

vue3完整Demo(数据绑定,数据显示,数据修改,数据提交)

需要引入的的依赖&#xff1a;jquery&#xff08;用于异步请求&#xff09; 一、数据显示的前端页面 条件查询数据并显示&#xff0c;下拉框使用的model双向绑定 二、js代码&#xff08;list页面的数据请求&#xff09; 后端传来的时间数据需要转换可以使用new Intl.DateTim…

【NOIP提高组】加分二叉树

【NOIP提高组】加分二叉树 &#x1f490;The Begin&#x1f490;点点关注&#xff0c;收藏不迷路&#x1f490; 设一个n个节点的二叉树tree的中序遍历为&#xff08;l,2,3,…,n&#xff09;&#xff0c;其中数字1,2,3,…,n为节点编号。每个节点都有一个分数&#xff08;均为正整…

【Java并发编程】信号量Semaphore详解

一、简介 Semaphore&#xff08;信号量&#xff09;&#xff1a;是用来控制同时访问特定资源的线程数量&#xff0c;它通过协调各个线程&#xff0c;以保证合理的使用公共资源。 Semaphore 一般用于流量的控制&#xff0c;特别是公共资源有限的应用场景。例如数据库的连接&am…

redis详细教程(2.List教程)

List是一种可以存储多个有序字符串的数据类型&#xff0c;其中的元素按照顺序排列&#xff08;可以重复出现&#xff09;&#xff0c;可以通过数字索引来访问列表中的元素&#xff0c;索引可以从左到右或者从右到左。 Redis 列表可以通过两种方式实现&#xff1a;压缩列表&…

力扣283-- 移动零

开始做梦的地方 力扣283 &#xff1a; 给定一个数组 nums&#xff0c;编写一个函数将所有 0 移动到数组的末尾&#xff0c;同时保持非零元素的相对顺序。请注意 &#xff0c;必须在不复制数组的情况下原地对数组进行操作。 何解&#xff1f; 1&#xff0c;暴力枚举&#xff1a…

ElasticSearch备考 -- index rollover

一、题目 给索引my-index-000001&#xff0c;创建别名my-index&#xff0c;并设置rollover&#xff0c;满足以下三个条件的 The index was created 7 or more days ago.The index contains 5 or more documents.The index’s largest primary shard is 1GB or larger. 二、思考…

cmake命令使用

有关cmake的入门简介可参见 CMake入门教程_cmake静态test.c编译-CSDN博客 本文是进一步对cmake常用命令做进一步详述 配置项目 cmake_minimum_required 作用 配置cmake最低版本 用法 cmake_minimum_required(VERSION 3.0) project 作用&#xff1a;设置预设变量 PROJEC…

w002基于Springboot医护人员排班系统

&#x1f64a;作者简介&#xff1a;多年一线开发工作经验&#xff0c;原创团队&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取&#xff0c;记得注明来意哦~&#x1f339;赠送计算机毕业设计600个选题excel文…

Python数据分析基础

本文介绍了Python在数据分析中的应用&#xff0c;包括数据读取、清洗、处理和分析的基本操作。通过使用Pandas和Numpy库&#xff0c;我们可以高效地处理大量数据&#xff0c;并利用Matplotlib和Seaborn库进行数据可视化。 1. 引言 Python因其简洁的语法和强大的库支持&#x…

重学SpringBoot3-Spring WebFlux之Reactor事件感知 API

更多SpringBoot3内容请关注我的专栏&#xff1a;《SpringBoot3》 期待您的点赞&#x1f44d;收藏⭐评论✍ Spring WebFlux之Reactor事件感知 API 1. 什么是 doOnXxx 系列 API&#xff1f;2. doOnXxx API 的常用方法2.1 doOnNext()示例&#xff1a;输出&#xff1a; 2.2 doOnErr…

OCR经典神经网络(三)LayoutLM v2算法原理及其在发票数据集上的应用(NER及RE)

OCR经典神经网络(三)LayoutLM v2算法原理及其在发票数据集上的应用(NER及RE) LayoutLM系列模型是微软发布的、文档理解多模态基础模型领域最重要和有代表性的工作&#xff1a; LayoutLM v2&#xff1a;在一个单一的多模态框架中对文本&#xff08;text&#xff09;、布局&…

OpenAI GPT-o1实现方案记录与梳理

本篇文章用于记录从各处收集到的o1复现方案的推测以及介绍 目录 Journey Learning - 上海交通大学NYUMBZUAIGAIRCore IdeaKey QuestionsKey TechnologiesTrainingInference A Tutorial on LLM Reasoning: Relevant methods behind ChatGPT o1 - UCL汪军教授Core Idea先导自回归…

anaconda 创建环境失败 解决指南

anaconda 创建环境失败 解决指南 一、问题描述 我在宿舍有一台电脑。由于我经常泡在实验室&#xff0c;所以那台电脑不是经常用&#xff0c;基本吃灰。昨天晚上突然有在那台电脑上使用Camel-AI部署多智能体协同需求&#xff0c;便戳开了电脑&#xff0c;问题也随之而来。 当…

开源实时数仓的构建

设计计思路 基本思路 开源数据平台的设计思路是通过 Flink SQL Batch、StartRocks SQL 、StartRocks物化视图 的能力实现一个离线任务的开发&#xff1b;使用 DolphinScheduler 进行离线工作流编排和调度&#xff1b;通过 Flink CDC 和 Flink SQL 实现流处理能力&#xff0c;进…

【自然语言处理】BERT模型

BERT&#xff1a;Bidirectional Encoder Representations from Transformers BERT 是 Google 于 2018 年提出的 自然语言处理&#xff08;NLP&#xff09;模型&#xff0c;它基于 Transformer 架构的 Encoder 部分。BERT 的出现极大提升了 NLP 任务的性能&#xff0c;如问答系…

Linux基础知识 - C(自学使用)

1.C语言基础知识 参考博客&#xff1a; https://blog.csdn.net/qq_45254369/article/details/126023482?ops_request_misc%257B%2522request%255Fid%2522%253A%252277629891-A0F3-4EFC-B1AC-410093596085%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%…

【Canvas与图标】六色彩虹圆角六边形图标

【成图】 120*120的png图标 以下是各种大小图&#xff1a; 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>六色彩虹圆角六边形…