[C#][winform]基于yolov5的驾驶员抽烟打电话安全带检测系统C#源码+onnx模型+评估指标曲线+精美GUI界面

news2025/1/10 18:11:05

【重要说明】

该系统以opencvsharp作图像处理,onnxruntime做推理引擎,使用CPU进行推理,适合有显卡或者没有显卡windows x64系统均可,不支持macOS和Linux系统,不支持x86的windows操作系统。由于采用CPU推理,要比GPU慢。为了适合大部分操作系统我们暂时只写了CPU推理源码,GPU推理源码后期根据需要可能会调整,目前只考虑CPU推理,主要是为了照顾现在大部分使用该源码是学生,很多人并没有显卡的电脑情况。

【算法介绍】

基于YOLOv5的驾驶员抽烟、打电话、安全带检测系统是一种先进的驾驶行为监测系统,旨在提高驾驶安全性。该系统利用YOLOv5算法,这是一种基于深度学习的目标检测算法,特别适用于实时目标检测任务。

在驾驶员抽烟、打电话、安全带检测系统中,YOLOv5算法通过将图像分割成网格并对每个网格进行分类,同时回归框的边界框参数,从而在单个前向传递中实现目标检测。为了训练这一系统,需要构建一个包含大量标注图像的数据集,这些图像应覆盖各种驾驶环境下,司机抽烟、打电话以及未系安全带的实例。

在实际应用中,该系统可以通过预置的摄像头或监控系统来实时获取图像或视频流,对输入图像进行处理和分析,通过YOLOv5模型检测驾驶员的行为,并判断是否存在抽烟、打电话或未系安全带等分心或违规行为。如果检测到这些行为,系统可以触发警报、发送通知或采取其他适当的措施,以提醒驾驶员纠正分心行为或违规行为,从而降低事故风险。

此外,该系统还需要考虑隐私保护和合规性相关的问题,确保系统的合法性和有效性。通过不断优化算法性能、扩大高质量数据集规模以及在实际应用中平衡技术与法律伦理考量,该系统将在减少交通事故、保障驾驶安全方面发挥重要作用。

【效果展示】

【测试环境】

windows10 x64系统
VS2019
netframework4.7.2
opencvsharp4.8.0
onnxruntime1.16.3

【模型可以检测出类别】

{0: 'cigarette', 1: 'phone', 2: 'seatbelt'}

【相关数据集(非本文训练的数据集)】

https://download.csdn.net/download/FL1623863129/89319046

【训练信息】

参数
训练集图片数11932
验证集图片数2393
训练map73.8%
训练精度(Precision)82.2%
训练召回率(Recall)69.8%

验证集每个类别精度统计

类别

MAP0.5(单位:%)

all

73

cigarette

60

phone

72

seatbelt

87

【部分实现源码】 

using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
using System.Windows.Forms;
 
namespace FIRC
{
    public partial class Form1 : Form
    {
 
        public bool videoStart = false;//视频停止标志
        string weightsPath = Application.StartupPath + "\\weights";//模型目录
        string labelTxt= Application.StartupPath + "\\weights\\class_names.txt";//类别文件
        Yolov8Manager detetor = new Yolov8Manager();//推理引擎
        public Form1()
        {
            InitializeComponent();
            CheckForIllegalCrossThreadCalls = false;//线程更新控件不报错
        }
        private void LoadWeightsFromDir()
        {
            var di = new DirectoryInfo(weightsPath);
            foreach(var fi in di.GetFiles("*.onnx"))
            {
                comboBox1.Items.Add(fi.Name);
            }
            if(comboBox1.Items.Count>0)
            {
                comboBox1.SelectedIndex = 0;
            }
            else
            {
                tssl_show.Text = "未找到模型,请关闭程序,放入模型到weights文件夹!";
                tsb_pic.Enabled = false;
                tsb_video.Enabled = false;
                tsb_camera.Enabled = false;
            }
        }
        private void Form1_Load(object sender, EventArgs e)
        {
            LoadWeightsFromDir();//从目录加载模型
        }
        public string GetResultString(Result result)
        {
            Dictionary<string, int> resultDict = new Dictionary<string, int>();
            for (int i = 0; i < result.length; i++)
            {
                if(resultDict.ContainsKey( result.classes[i]) )
                {
                    resultDict[result.classes[i]]++;
                }
                else
                {
                    resultDict[result.classes[i]]=1;
                }
            }
 
            var resultStr = "";
            foreach(var item in resultDict)
            {
                resultStr += string.Format("{0}:{1}\n",item.Key,item.Value);
            }
            return resultStr;
        }
        private void tsb_pic_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
            if (ofd.ShowDialog() != DialogResult.OK) return;
            tssl_show.Text = "正在检测中...";
            Task.Run(() => {
                var sw = new Stopwatch();
                sw.Start();
                Mat image = Cv2.ImRead(ofd.FileName);
                detetor.Confidence =Convert.ToSingle(numericUpDown1.Value);
                detetor.IOU = Convert.ToSingle(numericUpDown2.Value);
                var results=detetor.Inference(image);
                
                var resultImage = detetor.DrawImage(OpenCvSharp.Extensions.BitmapConverter.ToBitmap(image), results);
    
                sw.Stop();
                pb_show.Image = resultImage;
                tb_res.Text = GetResultString(results);
                tssl_show.Text = "检测已完成!总计耗时"+sw.Elapsed.TotalSeconds+"秒";
            });
           
 
 
        }
 
        public void VideoProcess(string videoPath)
        {
            Task.Run(() => {
 
                detetor.Confidence = Convert.ToSingle(numericUpDown1.Value);
                detetor.IOU = Convert.ToSingle(numericUpDown2.Value);
                VideoCapture capture = new VideoCapture(videoPath);
                if (!capture.IsOpened())
                {
                    tssl_show.Text="视频打开失败!";
                    return;
                }
                Mat frame = new Mat();
                var sw = new Stopwatch();
                int fps = 0;
                while (videoStart)
                {
 
                    capture.Read(frame);
                    if (frame.Empty())
                    {
                        Console.WriteLine("data is empty!");
                        break;
                    }
                    sw.Start();
                    var results = detetor.Inference(frame);
                    var resultImg = detetor.DrawImage(frame,results);
                    sw.Stop();
                    fps = Convert.ToInt32(1 / sw.Elapsed.TotalSeconds);
                    sw.Reset();
                    Cv2.PutText(resultImg, "FPS=" + fps, new OpenCvSharp.Point(30, 30), HersheyFonts.HersheyComplex, 1.0, new Scalar(255, 0, 0), 3);
                    //显示结果
                    pb_show.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(resultImg);
                    tb_res.Text = GetResultString(results);
                    Thread.Sleep(5);
 
 
                }
 
                capture.Release();
 
                pb_show.Image = null;
                tssl_show.Text = "视频已停止!";
                tsb_video.Text = "选择视频";
 
            });
        }
        public void CameraProcess(int cameraIndex=0)
        {
            Task.Run(() => {
 
                detetor.Confidence = Convert.ToSingle(numericUpDown1.Value);
                detetor.IOU = Convert.ToSingle(numericUpDown2.Value);
                VideoCapture capture = new VideoCapture(cameraIndex);
                if (!capture.IsOpened())
                {
                    tssl_show.Text = "摄像头打开失败!";
                    return;
                }
                Mat frame = new Mat();
                var sw = new Stopwatch();
                int fps = 0;
                while (videoStart)
                {
 
                    capture.Read(frame);
                    if (frame.Empty())
                    {
                        Console.WriteLine("data is empty!");
                        break;
                    }
                    sw.Start();
                    var results = detetor.Inference(frame);
                    var resultImg = detetor.DrawImage(frame, results);
                    sw.Stop();
                    fps = Convert.ToInt32(1 / sw.Elapsed.TotalSeconds);
                    sw.Reset();
                    Cv2.PutText(resultImg, "FPS=" + fps, new OpenCvSharp.Point(30, 30), HersheyFonts.HersheyComplex, 1.0, new Scalar(255, 0, 0), 3);
                    //显示结果
                    pb_show.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(resultImg);
                    tb_res.Text = GetResultString(results);
                    Thread.Sleep(5);
 
 
                }
 
                capture.Release();
 
                pb_show.Image = null;
                tssl_show.Text = "摄像头已停止!";
                tsb_camera.Text = "打开摄像头";
 
            });
        }
        private void tsb_video_Click(object sender, EventArgs e)
        {
            if(tsb_video.Text=="选择视频")
            {
                OpenFileDialog ofd = new OpenFileDialog();
                ofd.Filter = "视频文件(*.*)|*.mp4;*.avi";
                if (ofd.ShowDialog() != DialogResult.OK) return;
                videoStart = true;
                VideoProcess(ofd.FileName);
                tsb_video.Text = "停止";
                tssl_show.Text = "视频正在检测中...";
 
            }
            else
            {
                videoStart = false;
               
            }
        }
 
        private void tsb_camera_Click(object sender, EventArgs e)
        {
            if (tsb_camera.Text == "打开摄像头")
            {
                videoStart = true;
                CameraProcess(0);
                tsb_camera.Text = "停止";
                tssl_show.Text = "摄像头正在检测中...";
 
            }
            else
            {
                videoStart = false;
 
            }
        }
 
        private void tsb_exit_Click(object sender, EventArgs e)
        {
            videoStart = false;
            this.Close();
        }
 
        private void trackBar1_Scroll(object sender, EventArgs e)
        {
            numericUpDown1.Value = Convert.ToDecimal(trackBar1.Value / 100.0f);
        }
 
        private void trackBar2_Scroll(object sender, EventArgs e)
        {
            numericUpDown2.Value = Convert.ToDecimal(trackBar2.Value / 100.0f);
        }
 
        private void numericUpDown1_ValueChanged(object sender, EventArgs e)
        {
            trackBar1.Value = (int)(Convert.ToSingle(numericUpDown1.Value) * 100);
        }
 
        private void numericUpDown2_ValueChanged(object sender, EventArgs e)
        {
            trackBar2.Value = (int)(Convert.ToSingle(numericUpDown2.Value) * 100);
        }
 
        private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
        {
            tssl_show.Text="加载模型:"+comboBox1.Text;
            detetor.LoadWeights(weightsPath+"\\"+comboBox1.Text,labelTxt);
            tssl_show.Text = "模型加载已完成!";
        }
    }
}

【使用步骤】

使用步骤:
(1)首先根据官方框架yolov5安装教程安装好yolov5环境,并安装好pyqt5
(2)切换到自己安装的yolov5环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可

【提供文件】

python源码
yolov5n.onnx模型(不提供pytorch模型)
训练的map,P,R曲线图(在weights\results.png)
测试图片(在test_img文件夹下面)

【源码下载地址】

https://download.csdn.net/download/FL1623863129/88540396

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2223525.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

传统数据仓库升级版:云数据仓库!

随着公司业务拓展&#xff0c;数据爆炸性增长&#xff0c;数据驱动的见解已成为决策过程中关键指标。对公司来说&#xff0c;怎么选择存储所有这些信息的简单方法并运行必要的数据分析以获得有用的见解变得更加重要。 在过去的50多年里&#xff0c;传统的本地数据仓库一直是一…

ffmpeg视频滤镜:腐蚀滤镜

滤镜简述 erosion 官网链接> FFmpeg Filters Documentation 这个滤镜会在视频上应用腐蚀操作&#xff0c;腐蚀操作是形态学中一种操作&#xff0c;接触过opencv的同学应该很熟悉。滤镜主要有如下作用&#xff1a; 去除噪声&#xff1a;腐蚀可以帮助去除图像中的小颗粒噪…

构建后端为etcd的CoreDNS的容器集群(六)、编写自动维护域名记录的代码脚本

本文为系列测试文章&#xff0c;拟基于自签名证书认证的etcd容器来构建coredns域名解析系统。 一、前置文章 构建后端为etcd的CoreDNS的容器集群&#xff08;一&#xff09;、生成自签名证书 构建后端为etcd的CoreDNS的容器集群&#xff08;二&#xff09;、下载最新的etcd容…

pytorch训练和使用resnet

pytorch训练和使用resnet 使用 CIFAR-10数据集 训练 resnet resnet-train.py import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.optim as optim# 在CIFAR-10数据集中 # 训练集&#xff1a;包含50000张图像…

城市极客,存内先锋-存内社区主理人招募令

在这个数据驱动的时代&#xff0c;存内计算正成为推动技术革新的核心力量。 我们&#xff0c;存内计算社区&#xff0c;正站在这场革命的前沿&#xff0c;现在&#xff0c;我们正式发出召集令&#xff0c;寻找那些渴望引领技术浪潮的城市站主理人&#xff01; 地点&#xff1a…

使用LangChain进行LLM应用开发(1)——了解LangChain

【课程链接】https://www.ai360labs.com/playground/course/66813572135124992/detail 【适用人群】 入门学习Langchain的同学轻体验ChatOpenAI的同学&#xff0c;平台提供Api-key&#xff0c;应该是很小的token额度&#xff0c;仅供练习 LangChain是一个开源框架&#xff0c…

【机器学习基础】全连接层

1. 定义: 每一个节点都跟其后面所有的神经元相连两层之间所有神经元都有权重连接,通常全连接层在卷积神经网络尾部也就是跟传统的神经网络神经元的连接方式是一样的 2. 作用: 全连接层(fully connected layers,FC)在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、…

使用 NCC 和 PKG 打包 Node.js 项目为可执行文件(Linux ,macOS,Windows)

&#x1f3ac; 江城开朗的豌豆&#xff1a;个人主页 &#x1f525; 个人专栏 :《 VUE 》 《 javaScript 》 &#x1f4dd; 个人网站 :《 江城开朗的豌豆&#x1fadb; 》 ⛺️ 生活的理想&#xff0c;就是为了理想的生活 ! 目录 &#x1f4d8; 文章引言 步骤 1&#xff1a;…

linux:线程id及线程互斥

线程的tid不像进程&#xff0c;那不是他真正的id&#xff0c;也不是内核的lwp&#xff0c;而是由pthread库维护的一个唯一值 给用户提供的线程ID&#xff0c;不是内核中的lwp&#xff0c;而是pthread库维护的一个唯一值 库内部也要承担对线程的管理 #include<stdio.h>…

2024青龙面板京东教程

一、接上文《2024最新青龙面板安装教程》 腾讯云轻量服务器2核2G4M&#xff0c;只要79一年&#xff0c;可续费一次。 购买地址&#xff1a;https://curl.qcloud.com/LpLkvjq1 二、拉库 拉库前请打开青龙面板-配置文件 第18行 GithubProxyUrl“” 双引号中的内容清空 复制以…

代理 IP 对于鸿蒙开发者的意义与帮助

华为推出的鸿蒙操作系统以其独特的分布式架构和强大的性能&#xff0c;吸引了众多开发者的目光。而在鸿蒙开发的过程中&#xff0c;代理 IP 技术也发挥着重要的作用&#xff0c;为开发者带来了诸多意义与帮助。 一、提供更广泛的测试环境 对于鸿蒙开发者来说&#xff0c;确保应…

高效数据集成:聚水潭采购入库单与金蝶云星空

聚水潭采购入库单与金蝶云星空的高效数据集成案例分享 在企业日常运营中&#xff0c;采购入库单的数据处理和管理是至关重要的一环。为了实现聚水潭采购入库单到金蝶云星空的无缝对接&#xff0c;我们采用了轻易云数据集成平台&#xff0c;成功配置并运行了“聚水潭采购入库单…

钉钉录播抓取视频

爬取钉钉视频 免责声明 此脚本仅供学习参考&#xff0c;切勿违法使用下载他人资源进行售卖&#xff0c;本人不但任何责任! 仓库地址: GItee 源码仓库 执行顺序 poxyM3u8开启代理getM3u8url用于获取m3u8文件userAgent随机请求头downVideo|downVideoThreadTqdm单线程下载和…

荣耀MagicOS 9.0发布会及开发者大会丨一图读懂应用服务及商业合作分论坛

更多优质流量变现服务&#xff0c;可点击荣耀广告变现服务查看&#xff1b; 荣耀远航计划——应用市场【耀闪行动】全新上线&#xff0c;更多激励及资源扶持可点击荣耀应用市场耀闪行动查看。

Zookeeper实战 集群环境部署

1、概述 今天我们来学习一下Zookeeper集群相关的内容&#xff0c;本文主要的内容有集群环境的搭建&#xff0c;集群常见的问题和对应的解决方案。 2、集群环境搭建 2.1、准备工作 首先我们准备好安装包&#xff0c;创建好集群部署的路径。将解压后的安装文件复制三分。这里…

水轮发电机油压自动化控制系统解决方案介绍

在现代水电工程中&#xff0c;水轮机组油压自动化控制系统&#xff0c;不仅直接关系到水轮发电机组的安全稳定运行&#xff0c;还影响着整个水电站的生产效率和经济效益。 一、系统概述 国科JSF油压自动控制系统&#xff0c;适用于水轮发电机组调速器油压及主阀&#xff08;蝶…

【功能安全】 独立于环境的安全要素SEooC

目录 01 SEooC定义 02 SEooC开发步骤 03 SEooC开发示例 04 SEooC问答 01 SEooC定义 缩写: SEooC:Safety Element out of Context独立于环境的安全要素 SEooC出处:GB/T34590.10—2022,第9章节 SEooC与相关项什么关系? SEooC可以是系统、系统组合、子系统、软件组件、…

【Unity】游戏UI中添加粒子特效导致穿层问题的解决

这里介绍一下简易的ui系统中&#xff0c;添加粒子特效导致的穿层问题 首先是在ui界面中添加粒子特效预制体&#xff0c;这个时候&#xff0c;控制这个粒子显示层级的有两个方面 上图中&#xff0c;如果你的Sorting Layer ID的值&#xff08;Layer排序&#xff09;是大于当前C…

安康旅游指南:基于SpringBoot的网站开发实践

第一章 绪论 1.1 研究现状 时代的发展&#xff0c;我们迎来了数字化信息时代&#xff0c;它正在渐渐的改变着人们的工作、学习以及娱乐方式。计算机网络&#xff0c;Internet扮演着越来越重要的角色&#xff0c;人们已经离不开网络了&#xff0c;大量的图片、文字、视频冲击着我…

可视化大屏的C位放啥(04):园区鸟瞰图,方寸之间显示海量数据

在可视化大屏的 C 位放置园区鸟瞰图&#xff0c;可谓独具匠心。 鸟瞰图以宏观视角呈现整个园区风貌&#xff0c;让人一眼便对园区布局有清晰认知。同时&#xff0c;通过巧妙的设计&#xff0c;可在这方寸之间展示海量数据。 如园区内各企业的生产数据、能耗情况、人员流动等信…