基于卷积神经网络的花卉分类系统,resnet50,mobilenet模型【pytorch框架+python源码】

news2024/10/22 15:42:14

 更多目标检测和图像分类识别项目可看我主页其他文章

功能演示:

卷积神经网络,花卉识别系统,resnet50,mobilenet【pytorch框架,python源码】_哔哩哔哩_bilibili

(一)简介

基于卷积神经网络的花卉分类系统是在pytorch框架下实现的,这是一个完整的项目,包括代码,数据集,训练好的模型权重,模型训练记录,ui界面和各种模型指标图表等。

该项目有两个可选模型:resnet50和mobilenet,两个模型都在项目中;GUI界面由pyqt5设计和实现。此项目的两个模型可做对比分析,增加工作量。

该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:

超详细的pycharm+anaconda搭建python虚拟环境_pycharm虚拟环境搭建-CSDN博客

(二)项目介绍

1. 项目结构

​​​​

该项目可以使用已经训练好的模型权重,也可以自己重新训练,自己训练也比较简单

以训练resnet50模型为例:

第一步:修改model_resnet50.py的数据集路径,模型名称、模型训练的轮数

​ 

第二步:模型训练和验证,即直接运行model_resnet50.py文件

第三步:使用模型,即运行gui_chinese.py文件即可通过GUI界面来展示模型效果

2. 数据结构

​​​​​

部分数据展示: 

​​​​

3.GUI界面(技术栈:pyqt5+python+opencv) 
1)gui初始界面 

2)gui分类、识别界面 

​​​​

4.模型训练和验证的一些指标及效果
​​​​​1)模型训练和验证的准确率曲线,损失曲线

​​​​​2)热力图

​​3)准确率、精确率、召回率、F1值

4)模型训练和验证记录

​​

(三)代码

由于篇幅有限,只展示核心代码

    def main(self, epochs):
        # 记录训练过程
        log_file_name = './results/resnet50训练和验证过程.txt'
        # 记录正常的 print 信息
        sys.stdout = Logger(log_file_name)
 
        print("using {} device.".format(self.device))
        # 开始训练,记录开始时间
        begin_time = time()
        # 加载数据
        train_loader, validate_loader, class_names, train_num, val_num = self.data_load()
        print("class_names: ", class_names)
        train_steps = len(train_loader)
        val_steps = len(validate_loader)
        # 加载模型
        model = self.model_load()  # 创建模型
        # 修改全连接层的输出维度
        in_channel = model.fc.in_features
        model.fc = nn.Linear(in_channel, len(class_names))
 
        # 模型结构可视化
        x = torch.randn(16, 3, 224, 224)  # 随机生成一个输入
        # 模型结构保存路径
        model_visual_path = 'results/resnet50_visual.onnx'
        # 将 pytorch 模型以 onnx 格式导出并保存
        torch.onnx.export(model, x, model_visual_path)  
        # netron.start(model_visual_path)  # 浏览器会自动打开网络结构
 
 
        # 将模型放入GPU中
        model.to(self.device)
        # 定义损失函数
        loss_function = nn.CrossEntropyLoss()
        # 定义优化器
        params = [p for p in model.parameters() if p.requires_grad]
        optimizer = optim.Adam(params=params, lr=0.0001)
 
        train_loss_history, train_acc_history = [], []
        test_loss_history, test_acc_history = [], []
        best_acc = 0.0
 
        for epoch in range(0, epochs):
            # 下面是模型训练
            model.train()
            running_loss = 0.0
            train_acc = 0.0
            train_bar = tqdm(train_loader, file=sys.stdout)
            # 进来一个batch的数据,计算一次梯度,更新一次网络
            for step, data in enumerate(train_bar):
                # 获取图像及对应的真实标签
                images, labels = data
                # 清空过往梯度
                optimizer.zero_grad()
                # 得到预测的标签
                outputs = model(images.to(self.device))
                # 计算损失
                train_loss = loss_function(outputs, labels.to(self.device))
                # 反向传播,计算当前梯度
                train_loss.backward()
                # 根据梯度更新网络参数
                optimizer.step()  
 
                # 累加损失
                running_loss += train_loss.item()
                # 每行最大值的索引
                predict_y = torch.max(outputs, dim=1)[1]  
                # torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回False
                train_acc += torch.eq(predict_y, labels.to(self.device)).sum().item()
                # 更新进度条
                train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                         epochs,
                                                                         train_loss)
            # 下面是模型验证
            # 不启用 BatchNormalization 和 Dropout,保证BN和dropout不发生变化
            model.eval()
            # accumulate accurate number / epoch
            val_acc = 0.0  
            testing_loss = 0.0
            # 张量的计算过程中无需计算梯度
            with torch.no_grad():  
                val_bar = tqdm(validate_loader, file=sys.stdout)
                for val_data in val_bar:
                    # 获取图像及对应的真实标签
                    val_images, val_labels = val_data
                    # 得到预测的标签
                    outputs = model(val_images.to(self.device))
                    # 计算损失
                    val_loss = loss_function(outputs, val_labels.to(self.device))  
                    testing_loss += val_loss.item()
                    # 每行最大值的索引
                    predict_y = torch.max(outputs, dim=1)[1]  
                    # torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回False
                    val_acc += torch.eq(predict_y, val_labels.to(self.device)).sum().item()
 
            train_loss = running_loss / train_steps
            train_accurate = train_acc / train_num
            test_loss = testing_loss / val_steps
            val_accurate = val_acc / val_num
 
            train_loss_history.append(train_loss)
            train_acc_history.append(train_accurate)
            test_loss_history.append(test_loss)
            test_acc_history.append(val_accurate)
 
            print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
                  (epoch + 1, train_loss, val_accurate))
            # 保存最佳模型
            if val_accurate > best_acc:
                best_acc = val_accurate
                torch.save(model.state_dict(), self.model_name)
 
        # 记录结束时间
        end_time = time()
        run_time = end_time - begin_time
        print('该循环程序运行时间:', run_time, "s")
        # 绘制模型训练过程图
        self.show_loss_acc(train_loss_history, train_acc_history,
                           test_loss_history, test_acc_history)
        # 画热力图
        test_real_labels, test_pre_labels = self.heatmaps(model, validate_loader, class_names)
        # 计算混淆矩阵
        self.calculate_confusion_matrix(test_real_labels, test_pre_labels, class_names)

​​​​​(四)总结

以上即为整个项目的介绍,整个项目主要包括以下内容:完整的程序代码文件、训练好的模型、数据集、UI界面和各种模型指标图表等。

项目运行过程如出现问题,请及时交流!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2220892.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringSecurity源码分析以及如何解决前后端分离出现的跨域问题

解决Security前后端分离出现的跨域问题 一. Security源码分析 首先在看源码之前我们先来看这张图 , 这张图展示了Security执行的全部流程 从上图可知Security执行的入口是UsernamePasswordAuthenticationFilter这个抽象类 , 那我们就先从该类进行分析 1. UsernamePasswordAu…

029_基于nodejs外卖网站设计和实现

目录 系统展示 开发背景 代码实现 项目案例 获取源码 博主介绍:CodeMentor毕业设计领航者、全网关注者30W群落,InfoQ特邀专栏作家、技术博客领航者、InfoQ新星培育计划导师、Web开发领域杰出贡献者,博客领航之星、开发者头条/腾讯云/AW…

Java应用程序的测试覆盖率之设计与实现(一)-- 总体设计

一、背景 作为测试,如何保证开发人员提交上来的代码都被测试覆盖到,是衡量测试质量的一个重要指标。 本系列文章将要说一说,如何搭建一套测试覆盖率的系统。 包括以下内容: jacoco agent采集执行覆盖率数据jacoco climaven集成…

基于Multisim的模拟拔河游戏比赛设计与仿真

1.设计一个模拟拔河游戏比赛的逻辑电路 2.使用15个发光二极管表示绳子,开机后只有最中间的发光二极管亮。 3.比赛双方各持一个按钮,快速不断地按动按钮,产生脉冲,谁按的快,发光的二极管就向谁的方向移动,每…

越狱你的 iPhone 安全吗?

越狱 iPhone 并不安全,可能会导致您的个人信息被盗、手机感染恶意软件以及软件出现故障。越狱 iPhone 会增加网络犯罪分子可利用来访问您的私人信息的安全漏洞数量。 继续阅读,了解什么是越狱以及为什么你永远不应该越狱你的 iPhone。 什么是越狱&…

K8S系列-Kubernetes网络

一、Kubernetes网络模型 ​ Kubernetes网络模型设计的一个基础原则是:每个Pod都拥有一个独立的IP地址,并假定所有Pod都在一个可以直接连通的、扁平的网络空间中,不管它们是否运行在同一个Node(宿主机)中,都…

鸿蒙网络编程系列31-使用RCP调用OpenAI接口实现智能助手

简介 在OpenAI推出GPT系列大模型以后,市场上各种类似的大模型也层出不穷,这些大模型也基本都会兼容OpenAI的接口,在开发基于大模型的应用时,选择使用OpenAI接口作为和后端大模型通讯的标准,可以更好的适配不同厂家的模…

Scala 内部类

一. scala的内部类的定义 它是指定义在类或对象内部的类。 idea实例 二.内部类的基本使用 idea实例 三.内部类的使用案例 四.内部对象 idea实例 五.匿名类 idea实例

Bluetooth Channel Sounding中关于CS Step及Phase Based Ranging相应Mode介绍

目录 BLE CS中Step定义 BLE CS中交互的数据包/波形格式 BLE CS中Step的不同Mode BLE CS中Step的执行过程 Mode0介绍 Mode0 步骤的作用 Mode0步骤的执行过程 Mode0步骤的执行时间 Mode0步骤的时间精度要求 Mode2介绍 Mode2步骤的作用和执行过程 Mode2步骤的执行时间 B…

13.4 Linux_网络编程_套接字属性

概述 什么是选项的级别: socket中可以设置的属性种类很多,比如socke的选项、传输层TCP/UDP的选项、数据链路层的选项。这些选项在不同的层级,这就是选项的级别。常用级别及含义如下: 级别含义SOL_SOCKET作用于套接字本身IPPROT…

MySQL中的优先规则

在图片的例子中,有两个条件: 第一个条件是job_id是AD_PRES并且薪水高于15,000。 第二个条件是job_id是SA_REP。 在图片中的例子有两个条件: 第一个条件是job_id是AD_PRES或者SA_REP。 第二个条件是薪水高于$15,000。

React Componet类组件详解(老项目)

React类组件是通过创建class继承React.Component来创建的,是React中用于构建用户界面的重要部分。以下是对React类组件的详细解释: 一、定义与基本结构 类组件使用ES6的class语法定义,并继承自React.Component。它们具有更复杂的功能&#…

Vscode连接WSL2(Ubuntu20.04)

一.安装WSL插件 在扩展里面搜索WSL,选择安装即可 二.连接到wsl 安装完毕后在左下角看到一个按钮&#xff08;一个>和一个<组成&#xff09;&#xff0c;点击在中间选择"连接到wsl",然后Vscode会弹出一个新窗口&#xff0c;左下角显示WSL子系统名称&#xff0…

vue中如何检测数组变化(vue基础,面试,源码级讲解)

大家有什么不明白的地方可以分享在评论区&#xff0c;大家一起探讨哦~~ &#xff08;如果对数据劫持还有所不明白的小伙伴&#xff0c;可以去看看上一篇文章哦&#xff09; 在vue2中&#xff0c;是如何对数组进行劫持的呢&#xff1f; 简单代码实现&#xff1a; 在vue2中&…

学习中,师傅b站泷羽sec——xss挖掘过程

某职业技术学院网站xss挖掘&#xff1a; 资产归纳 例如&#xff1a;先把功能点都看一遍&#xff0c;大部分都是文章 根据信息搜集第一课学习到一般主站的防御力是比较强的&#xff0c;出现漏洞的点不是对新手不友好。 在资产验证过程中还是把主站看了一遍 没有发现有攻击的机会…

G1 GAN生成MNIST手写数字图像

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 G1 GAN生成MNIST手写数字图像 1. 生成对抗网络 (GAN) 简介 生成对抗网络 (GAN) 是一种通过“对抗性”学习生成数据的深度学习模型&#xff0c;通常用于生成…

如何调试浏览器中的内存泄漏?

聚沙成塔每天进步一点点 本文回顾 ⭐ 专栏简介⭐ 如何调试浏览器中的内存泄漏&#xff1f;1. 什么是内存泄漏&#xff1f;2. 调试内存泄漏的工具3. 如何使用 Memory 面板进行内存调试3.1 获取内存快照&#xff08;Heap Snapshot&#xff09;获取内存快照的步骤&#xff1a;快照…

即时通讯增加Redis渠道

情况说明 在本地和服务器分别启动im服务&#xff0c;当本地发送消息时&#xff0c;会发现服务器上并没有收到消息 初版im只支持单机版&#xff0c;不支持分布式的情况。此次针对该情况对项目进行优化,文档中贴出的代码非完整代码&#xff0c;可自行查看参考资料[2] 代码结构调…

C Primer Plus 第9章——第一篇

你该逆袭了 文章目录 一、复习函数1、定义带形式参数的函数2、声明带形式参数函数的原型3、使用 return 从函数中返回值&#xff08;1&#xff09;、返回值不仅可以赋给变量&#xff0c;也可以被用作表达式的一部分。&#xff08;2&#xff09;、返回值不一定是变量的值&#x…

springboot redisTemplate hash 序列化探讨

前提提要&#xff1a;这个是个人小白总结&#xff0c;写完博客后开始厌蠢。 redisTemplate 有两种插入hash的方式 redisTemplate.opsForHash().putAll(key, map);redisTemplate.opsForHash().put(key, field, value);在使用的过程中&#xff0c;难免会疑问为什么 key field v…