机器学习在聚合物及其复合材料中的应用与实践

news2024/11/26 17:28:12

在当前的工业和科研领域,聚合物及其复合材料因其卓越的物理和化学性能而受到广泛关注。这些材料在航空航天、汽车制造、能源开发和生物医学等多个行业中发挥着至关重要的作用。随着材料科学的发展,传统的实验和理论分析方法已逐渐无法满足新材料研发的需求,特别是在材料性能预测、结构设计优化和制造过程控制等方面。因此,寻找一种高效、准确且创新的研究方法变得尤为迫切。

近年来,机器学习技术以其强大的数据处理能力和模式识别优势,在聚合物及其复合材料的研究中显示出巨大的潜力。通过机器学习,研究人员能够从大量实验数据中提取有价值的信息,预测材料性能,优化设计参数,并实现制造过程的智能化控制。这些技术的应用不仅能够加速新材料的研发进程,还能提高材料的性能和可靠性,降低生产成本。然而,机器学习在聚合物及其复合材料领域的应用仍面临诸多挑战,包括数据的收集与预处理、特征选择、模型构建、性能评估以及结果的可解释性等。为了克服这些挑战,需要对机器学习的基本理论、算法模型及其在材料科学中的具体应用有深入的了解和掌握。

本专题培训课程“机器学习在聚合物及其复合材料中的应用与实践”旨在为材料科学领域的研究人员、工程师和学生提供一个全面的学习平台。通过本课程,学员将学习到如何将机器学习技术应用于聚合物及其复合材料的研究中,包括数据机理协同驱动的机器学习方法、常用机器学习模型的构建与评估、以及 SCI 文章写作与科研指导等内容。通过理论讲解、实例分析和实际操作相结合的方式,帮助学员掌握机器学习在复合材料科学研究中的关键技能,为未来的科研和工程实践打下坚实的基础。

适合材料科学、电力工业、航空航天科学与工程、有机化工、无机化工、建筑科学与工程、自动化技术、工业通用技术、汽车工业、金属学与金属工艺、机械工业、船舶工业等领域的科研人员、工程师、及相关行业从业者、跨领域研究人员。

机器学习在聚合物及其复合材料中的应用与实践

研究背景与机器学习基础模型介绍

1.机器学习在先进复合材料中的应用概述

2.机器学习用于聚合物及其复合材料研究的流程

3.数据机理协同驱动机器学习方法概述

4.基于物理机理的能量等效原理在纤维增强复合材料性能研究中的应用

5.数据机理协同驱动机器学习算法模型构建介绍

6.常用机器学习模型入门介绍

实例:展示不同的机器学习算法(如 BP 神经网络、SVR、CNN、DTR、RF)在复合材料性能预测中的应用,以及如何利用机器学习模型预测复合材料在不同温度下的力学性能

材料力学性能研究中应用机器学习模型

1.机器学习虚拟环境的搭建及所需库的安装

2.机器学习回归与预测的区别和联系

3.聚合物及其复合材料数据收集与数据预处理

实例:以 PBO 为例,讲解如何进行有效的数据清洗和预处理,以提高模型的预测准确性。

4.聚合物及其复合材料机器学习特征工程与选择

(1)递归特征消除(RFE)与皮尔逊相关系数

(2)输入特征综合选取

实例:以 POM 为例,讨论特征选择、特征工程在提高模型性能中的作用,以及如何结合物理机理进行特征选择。

5.常用机器学习模型用于聚合物及其复合材料力学性能研究

(1)BP 神经网络

(2)支持向量回归(SVR)

(3)卷积神经网络(CNN)

(4)决策树回归(DTR)

(5)随机森林(RF)

实例:以纤维增强热塑性复合材料为例,使用物理基础的能量等效原理和机器学习算法来建立复合材料的力学性能模型,预测其应力应变曲线并进行模型比较

6.机器学习模型评估

(1)回归模型中的评价指标(MSE、RMSE、MAE 和 R 2 )

(2)小提琴图绘制及评估

实例:以 PBO 为例,比较不同模型的性能并选择最佳模型

7.可解释性机器学习方法—SHAP

(1)SHAP 理论基础,介绍 SHAP 值在复合材料力学性能预测中的

应用,以及如何利用 SHAP 值进行模型解释和特征重要性分析

(2)计算和解释 SHAP 值

实例:以 PBO 为例,解释各输入特征对预测结果的影响

8.机器学习数据集及其对预测结果的影响

实例:以 PBO 为例,讨论数据集的质量和规模对模型预测性能的影响,以及如何构建和优化数据集

SCI 文章写作与科研指导

  1. 应用机器学习研究复合材料力学性能的 SCI 论文案例解析

参考文献:Theory-inspired machine learning for stress–strain curve prediction

of short fiber-reinforced composites with unseen design space

(1)论文应用机器学习研究的创新点分析

(2)特征选取与数据预处理方法

(3)使用的模型结构与构建

(4)机器学习模型性能评估

(5)机器学习结果可视化

2.SCI 论文撰写规范与创新思路

3.先进复合材料发展趋势与创新研究展望 4.论文写作互动环节
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
由来自全国知名高校副教授,省部级人才带领团队讲授。长期从事先进复合材料极端力学性能和基于机器学习的表征预测研究,主持国家级或省部级项目 10 余项,发表 SCI 论文 40 余篇,其中发表在多个中科院一区 TOP 期刊;授权国家发明专利 9 项;荣获人才类、学术类及荣誉类各级别奖励 10 余项。团队导师担任国际期刊编委、SCI 期刊 Polymer International 客座编辑、核心期刊专家委员会委员以及 20 余个 SCI 期刊审稿人

  1. 综合性课程内容:涵盖了从机器学习基础模型介绍到实际应用案例的全面内容,模型构建、数据预处理、特征工程、模型评估等。通过多个实例演示如何将机器学习技术应用于聚合物及其复合材料的研究,强调理论与实践的结合。

  2. 技术深度:深入探讨了数据机理协同驱动的机器学习方法,以及如何结合物理机理进行特征选择和模型构建。

  3. 算法多样性:介绍了多种机器学习算法,如 BP 神经网络、SVR、CNN、DTR、RF 等,并展示了它们在复合材料性能预测中的应用。

  4. 模型评估与优化:详细讲解了如何评估机器学习模型的性能,包括评价指标和可视化方法,以及如何通过数据集的构建和优化来提高预测准确性。

  5. 可解释性方法:介绍了 SHAP(SHapley Additive exPlanations)方法,这是一种可解释性机器学习方法,用于解释模型预测和特征重要性分析。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2219661.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【力扣打卡系列】滑动窗口与双指针(无重复字符的最长子串)

坚持按题型打卡&刷&梳理力扣算法题系列,语言为go,Day7 无重复字符的最长子串 题目描述解题思路 不含重复字符——》考虑使用哈希表来存储记录为了提高效率也可以用数组,hash : [128]bool{} (因为存的是字符的ASCLL码&…

【Unity踩坑】无法关闭Unity(Application.Shutdown.CleanupEngine)

安装了Unity 6正式版,在关闭Unity 项目时,会出现下面的提示,一直无法关闭。 一直显示 Application.Shutdown.CleanupEngine。 查了一下。这是一个历史性问题了,看来依然没有解决。 参考:Application.Shutdown.Cleanu…

web API基础

作用和分类 作用: 就是使用 JS 去操作 html 和浏览器 分类: DOM (文档对象模型)、 BOM (浏览器对象模型) 什么是DOM DOM (Document Object Model) 译为文档对象模型,是 HTML 和 XML 文档的编程接口。 HTML DOM 定义了访问和操作 …

权限(补充)

在上一篇Linux权限(想了解的可以点击看看哦)中已经见识了一部分权限,但是少了很重要的一部分: 那就是用户之间的转换,文件读写的关系,这里就简单的介绍一些; 我们在Linux权限知道了目录权限的关…

推荐一款多显示器管理工具:DisplayMagician

DisplayMagician是一款开源工具,专为Windows用户设计,能够通过一个快捷方式轻松自动配置屏幕和声音。它特别适合游戏玩家和应用程序用户,可以实现屏幕配置、声音设备切换以及启动额外程序等功能,最后在游戏或应用程序关闭时&#…

Qml-Item的Id生效范围

Qml-Item的Id生效范围 前置声明 本实例在Qt6.5版本中做的验证同一个qml文件中,id是唯一的,即不同有两个相同id 的Item;当前qml文件中声明的id在当前文件中有效(即如果其它组件中传入的id,与当前qml文件中id 相同,当前…

基于curl和wget命令编写的多文件或大文件批量上传下载

最近需要在windows和服务器linux系统之间传递大量的文件,部分文件非常大(TB以上),并且文件夹中包含文件或文件夹,需要先进行上传再进行组织,因此就想办法结合curl和wget命令编写了命令或脚本工具&#xff0…

三菱PLC伺服-停止位置不正确故障排查

停止位置不正确时,请确认以下项目。 1)请确认伺服放大器(驱动单元)的电子齿轮的设定是否正确。 2)请确认原点位置是否偏移。 1、设计近点信号(DOG)时,请考虑有足够为0N的时间能充分减速到爬行速度。该指令在DOG的前端开始减速到爬行速度&…

【云从】六、云存储

文章目录 1、应用架构2、存储设备3、存储方案3.1 直连式存储DAS3.2 网络连接存储NAS3.3 存储区域网络SAN3.4 分布式存储ServerSAN3.5 软件定义存储SDS 4、云存储4.1 云硬盘CBS4.2 文件存储CFS4.3 对象存储COS 1、应用架构 2、存储设备 硬盘性能对比: 硬盘接口对比&…

C语言(函数)—函数栈帧的创建和销毁

目录 前言 补充知识 一、函数线帧是什么? 二、函数线帧的实现(举例说明) 两数之和代码 ​编辑两数之和 汇编代码分析 执行第一条语句 执行第二条语句 执行第三条语句 执行第四、五、六条语句 执行第七条语句 执行第八、九、十条语句 执行第十…

Scroll 生态首个 meme 项目 $Baggor,我们可以有哪些期待?

在最近几个月里,加密市场整体表现平稳,无论是比特币还是山寨币板块,都处于震荡状态,并未显示出突破前高的迹象。然而,在这样的市场背景下,meme币却持续扛起了大旗,令这个看似不太熊的熊市不断引…

递归算法笔记

根据b站视频整理的 **视频地址:**https://www.bilibili.com/video/BV1S24y1p7iH/?spm_id_from333.788.videopod.sections&vd_source6335ddc7b30e1f4510569db5f2506f20 最常见的一个递归例子: 斐波那契数列:1,2,3…

Linux 使用xtrabackup备份MySQL数据

目录 一:xtrabackup 介绍二:实现数据备份1. 实现全备份2. 实现增量备份3. 实现差异备份4. 全备份时压缩数据5. 全备份时排除指定表不备份6. 全备份时排除指定库不备份 三:实现数据还原1. 全备份数据恢复流程2. 全备份压缩后的数据恢复流程3. …

神仙公司名单(长沙)

神仙公司(长沙) 小周末,继续 神仙公司系列。 长沙,湖南省的省会城市,不仅以其深厚的历史文化底蕴著称,同时也是一个充满活力的现代都市。 长沙的经济活力、教育资源、医疗资源、就业机会、居住环境、生活成…

python中堆的用法

Python 堆(Headp) Python中堆是一种基于二叉树存储的数据结构。 主要应用场景: 对一个序列数据的操作基于排序的操作场景,例如序列数据基于最大值最小值进行的操作。 堆的数据结构: Python 中堆是一颗平衡二叉树&am…

15分钟学Go 第2天:安装Go环境

第2天:安装Go环境 1. 引言 在学习Go语言之前,首先需要配置好本地开发环境。本节将详细介绍如何在Windows 11上安装和配置Go语言环境,包括安装步骤、环境变量设置、VS Code配置与测试、以及常见问题解决方案。完成这些步骤后,你将…

Excel:vba实现筛选出有批注的单元格

实现的效果:代码: Sub test() Dim cell As RangeRange("F3:I10000").ClearlastRow Cells(Rows.Count, "f").End(xlUp).Row MsgBox lastrow For Each cell In Range("a1:a21")If Not cell.Comment Is Nothing ThenMsgBox…

【AIGC】2024-arXiv-InstantStyle:文本到图像生成中保持风格的免费午餐

2024-arXiv-InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation InstantStyle:文本到图像生成中保持风格的免费午餐摘要1. 引言2. 相关工作2.1 文本到图像的传播模型2.2 风格化图像生成2.3 扩散模型中的注意力控制 3. 方法3.1 动机3.2…

keil中编译遇到错误“error #94-D the size of an array must be greater than zero”解决方法

这一期,我们来看一个在keil中编译时候遇到定义数组元素个数为0时候遇到的一个错误。 错误: 先看错误:编译提示错误“error: #94-D: the size of an array must be greater than zero” ,意思是这个数组内元素个数不能定义为0个&…

【AIGC】解锁高效GPTs:ChatGPT-Builder中系统提示词Prompt的设计与应用

博客主页: [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 💯前言💯系统提示词系统提示词的作用与重要性系统提示词在构建GPTs中的作用结论 💯ChatGPT-Builder系统提示词的详细解读OpenAI为Builder编写的系统提示词系统提示词对…