如何处理多频段时序特征?这个Transformer变体显著提升预测效果

news2024/10/17 13:15:42

Transformer 模型已在时间序列预测中展现了卓越的性能。然而,在一些复杂场景中,它倾向于学习数据中的低频特征,而忽略了高频特征,表现出一种频率偏差。这种偏差阻碍了模型准确捕捉重要的高频数据特征。

本文介绍一篇来自 KDD 2024 的论文,这是首篇研究时间序列预测中频率偏差问题的文章。其研究者通过实证分析来理解这种偏差,并发现频率偏差源于模型不成比例地关注具有更高能量的频率特征。基于分析,研究者提出了 Fredformer,这是一个基于 Transformer 的框架,旨在通过在不同频率带之间均衡地学习特征来减轻频率偏差。这种方法防止了模型忽视对准确预测至关重要的低幅特征。广泛的实验表明了这种方法的有效性,在实现了可比性能的同时,参数规模更少,计算成本更低

img

【论文标题】

Fredformer: Frequency Debiased Transformer for Time Series Forecasting

【论文地址】

https://arxiv.org/abs/2406.09009

【论文源码】

https://github.com/chenzRG/Fredformer

img

论文背景

现有的 Transformer 模型在时间序列预测任务中,倾向于捕捉低频特征而忽略高频特征,这种频率偏差问题会导致模型无法准确捕捉重要的高频数据特征。而在复杂的时间序列预测场景中,准确捕捉各种时间变化(如趋势、季节性和波动)对于提高预测准确性至关重要。现有的方法在处理这些复杂变化时存在局限性。

img

图1:模型效果对比

从模型的角度来看,研究者注意到 Transformer 中普遍存在的一种学习偏差问题,即自注意力机制通常会优先考虑低频特征,而忽视高频特征。这种微妙的问题也可能出现在时间序列预测中,可能会偏向模型结果并导致信息丢失。

研究者探索了通过频率域建模来捕获复杂变化以进行准确时间序列预测的一个方向,进而提出了 Fredformer,这是一个去偏的 Transformer 模型。Fredformer 继承了频率分解的思路,且进一步研究了如何促进 Transformer 在学习频率特征时的使用。为了提高模型方法的有效性,研究者提供了对时间序列预测中频率偏差的全面分析以及去偏策略。该工作的主要贡献在于三个方面:

  • **问题定义:**研究者进行了实证研究,以调查这种偏差是如何被引入到时间序列预测 Transformer 中的。文中观察到,主要原因是关键频率成分之间的比例差异。值得注意的是,这些关键成分在预测的历史数据和真实数据中应该是一致的。此外,研究者还调查了影响去偏的目标和关键设计。

  • **算法设计:**Fredformer 有三个关键组件:用于频率带的补丁操作、用于减轻比例差异的子频率独立归一化,以及每个子频率带内的通道注意力,用于公平学习所有频率和注意力去偏。

  • **适用性:**Fredformer 采用 Nyström 近似来降低注意力图的计算复杂性,从而实现了具有竞争性能的轻量级模型。这为高效的时间序列预测开辟了新的机会。

理论分析

研究者通过两个案例研究来展示时间序列数据的频率属性如何导致 Transformer 模型的预测偏差,以及对潜在去偏策略的实证分析。如下图所示:

img

图2:两个案例研究可视化图

  • 案例a:

通过生成具有不同频率成分比例的单通道时间序列数据,并使用 Transformer 模型进行预测,展示了模型在训练过程中对不同频率成分的捕捉情况。结果表明,模型倾向于关注低频成分,而忽略了高频成分。

  • 案例b:

探讨了不同的建模策略对于去偏的影响,包括在频率域进行建模和在时间域进行建模,并引入了频率局部归一化的概念。

研究者引入了一个基于傅里叶分析的相对误差度量方法来量化 Transformer 模型输出的频率偏差。基于上述分析,研究者提出了直接在频率域建模,并结合比例缓解策略来实现去偏的潜力。

模型方法

img

图3:Fredformer模型框架

Fredformer 模型是通过一系列创新的设计来解决时间序列预测中的频率偏差问题,其架构包括以下主要组件:

01

DFT到IDFT的基础架构

使用离散傅里叶变换(DFT)将输入时间序列分解为频率成分,并通过逆离散傅里叶变换(IDFT)重构预测结果。

首先,模型使用 DFT 将输入的时间序列数据分解成频率系数。然后,通过一个 Transformer 编码器对频率系数进行处理,学习去偏的频率特征。最后,使用 IDFT 将处理后的频率输出重构回时域信号。

02

频率细化与归一化

对频率谱进行细分,使用非重叠的补丁操作将频率成分分为多个子频率带,以避免不同频率成分之间的相互影响。通过对频率补丁进行归一化,消除不同频率成分之间的比例差异,确保模型对所有关键频率成分的均等关注。

03

频率局部独立建模

在归一化后的子频率分块上,模型部署了 Transformer 编码器来独立学习每个分块的特征。通过这种方式,模型能够专注于相同频率带内跨通道的相关性,而不是不同频率成分之间的幅度差异,从而实现去偏。

04

频率汇总

在学习到每个子频率带的特征之后,模型通过线性变换和 IDFT 将这些特征信息汇总,形成最终的预测输出。

实验效果

研究者为了验证 Fredformer 模型的有效性,设计了一系列的实验。研究者选择了八个真实世界的时间序列数据集,包括天气、电力变压器温度(ETT)、电力消耗、交通和太阳能等数据。

研究者将 FredFormer 与多个现有的最先进(SOTA)模型进行比较,包括但不限于iTransformer、PatchTST、Crossformer、FEDformer等。也包括了一些非 Transformer 模型,如线性模型和 TCN 模型。实验结果如下表所示:

img

表1:多变量预测下不同预测长度的表现

img

表2:所有数据完整测试结果

使用 DFT 可视化模型输出、输入和真实数据之间的频率偏差。通过热图展示了不同模型在训练过程中对特定频率成分的捕捉情况。

img

通过移除 Fredformer 模型中的特定组件(如通道注意力和频率细化)来评估这些组件对性能的影响。展示了不同配置下模型的预测准确性,以证明模型设计的合理性。

img

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2217077.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

菜鸟笔记006 截图识别文字插件 textOCR

随手可得的截图识别文字插件 textOCR,识别出来的文字可直接输入到illustrator的当前文档中: 执行条件 1、需截图软件支持,推荐笔记截图工具 2、截好图片直接拖入面板即可完成识别 ****后期可完成实现在illustrator选择图片对象完成文字识别。…

Docker-Harbor概述及构建

文章目录 一、Docker Harbor概述1.Harbor的特性2.Harbor的构成 二、搭建本地私有仓库三、部署 Docker-Harbor 服务四、在其他客户端上传镜像五、维护管理Harbor 一、Docker Harbor概述 Harbor 是 VMware 公司开源的企业级 Docker Registry 项目,其目标是帮助用户迅…

方波信号发生器(完整SCL源代码)

正弦和余弦信号发生器请参考下面文章链接: 1、博途PLC平台 PLC信号发生器(博途SCL)_博图软件波形发生器怎么用-CSDN博客文章浏览阅读1.1k次。本文介绍了如何使用博途SCL编程实现不同周期和幅值的信号发生器,包括余弦和正弦信号。通过信号发生器,可以用于验证PLC的滤波器效…

cesium模型加载

注意cesium版本&#xff1a; "three": "^0.168.0", 代码&#xff1a; <template><Layout :bg-color"black"><template #content><div id"cesiumContainers"><div id"cesiumContainer" class&q…

【C++】——二叉搜索树

目录 一、前言 二、二叉搜索树 2.1概念 2.2二叉搜索树操作 2.2.1 二叉树的查找 2.2.2 二叉搜索树的插入 2.2.3 二叉搜索树的删除 ​编辑 2.3二叉搜索树的实现 2.3.1查找 2.3.2 插入 2.3.3 删除 2.3.4 打印 2.3.5 拷贝构造和赋值重载 2.3.6 析构函数 2.4 二叉搜索…

智能去毛刺:2D视觉引导机器人如何重塑制造业未来

机器人技术已经深入到各个工业领域中&#xff0c;为制造业带来了前所未有的变革。其中&#xff0c;2D视觉引导机器人技术以其精准、高效的特点&#xff0c;在去毛刺工艺中发挥着越来越重要的作用。本文将为您介绍2D视觉引导机器人技术的基本原理及其在去毛刺工艺中的应用&#…

c++初阶数据结构速成

温馨提示&#xff1a;本篇文章只给大家介绍初阶数据结构的一些常用接口 stl的简单介绍 什么是stl? STL(standard template libaray-标准模板库)&#xff1a;是C标准库的重要组成部分&#xff0c;不仅是一个可复用的 组件库&#xff0c;而且是一个包罗数据结构与算法的软件框…

Redis 哨兵模式下DB库操作审计

Redis Sentinel集群环境 主机版本模式NodeSentinelredis-sentinel-node-06.2.12哨兵MasterYesredis-sentinel-node-16.2.12哨兵SlaveYesredis-sentinel-node-26.2.12哨兵SlaveYes 架构设计 命令行&程序验证 1、在redis-sentinel-node-1上使用redis-cli 连接redis-sentine…

2024台州赛CTFwp

备注&#xff1a; 解题过程中&#xff0c;关键步骤不可省略&#xff0c;不可含糊其辞、一笔带过。解题过程中如是自己编写的脚本&#xff0c;不可省略&#xff0c;不可截图&#xff08;代码字体可以调小&#xff1b;而如果代码太长&#xff0c;则贴关键代码函数&#xff09;。…

开放式蓝牙耳机哪个品牌好用?开放式耳机排行榜测评!

开放式耳机&#xff0c;因其特殊的不入耳佩戴模式&#xff0c;让使用者在享受音乐或者进行通话的过程中&#xff0c;依然可以对外界声音保持敏感。在户外运动场景下&#xff0c;这种特性优势尽显&#xff0c;既保证了耳机佩戴的稳定和舒适&#xff0c;又提高了运动的安全性。为…

Netty结构

Netty结构 引导器Bootstrap举例&#xff1a;一个简单的HTTP服务器服务端启动类服务端业务逻辑处理类 二级目录Channel初始化&#xff08;设置Channel类型&#xff09;注册ChannelHandler结合HTTP请求-响应&#xff0c;分析数据在ChannelPipeline中的流向 设置Channel参数端口绑…

java互联网医院智能导诊系统源码,Uniapp前端开发框架,支持一次编写,多端运行

智慧导诊系统源码&#xff0c;java源码&#xff0c;大屏机自动导诊&#xff0c;互联网医院智能导诊系统源码 老是全身无力&#xff0c;挂什么科&#xff1f; 经常头痛&#xff0c;挂什么科&#xff1f; 总是失眠&#xff0c;又得挂哪个科&#xff1f; 世界上最遥远的距离再加…

初识git · 多人协作

目录 前言&#xff1a; 多人协作一 多人协作二 前言&#xff1a; git从发布以来&#xff0c;强大的功能有版本回退以及分支管理&#xff0c;那么分支管理用来不仅是为了维护master的&#xff0c;更多的是多人协作的一种代表&#xff0c;所以多人协作这一章节&#xff0c;基…

2010年国赛高教杯数学建模C题输油管的布置解题全过程文档及程序

2010年国赛高教杯数学建模 C题 输油管的布置 某油田计划在铁路线一侧建造两家炼油厂&#xff0c;同时在铁路线上增建一个车站&#xff0c;用来运送成品油。由于这种模式具有一定的普遍性&#xff0c;油田设计院希望建立管线建设费用最省的一般数学模型与方法。   1. 针对两炼…

基于SpringBoot农场管理平台【附源码】

基于SpringBoot农场管理平台 效果如下&#xff1a; 系统首页界面 系统注册页面 农业生产资料详细页面 个人中心界面 管理员登录界面 管理员主界面 用户管理界面 资料分类管理界面 方法分类管理界面 计划分类管理界面 农业生产资料管理界面 研究背景 农业是人类社会发展的基石…

实现vlan间的通信

方法一&#xff1a;单臂路由 概述 单臂路由是一种网络配置&#xff0c;它允许在路由器的一个物理接口上通过配置多个子接口来处理不同VLAN的流量&#xff0c;从而实现VLAN间的通信。 原理 路由器重新封装MAC地址&#xff0c;转换Vlan标签 基础模型 1、配置交换机的链…

【openGL学习笔记】----GLFW、GLAD环境配置

glew、glad、freeglut、glfw的区别&#xff1f; glew&#xff08;The OpenGL Extension Wrangler Library&#xff09;是对底层OpenGL接口的封装&#xff0c;可以让你的代码跨平台。glad与glew作用相同&#xff0c;可以看作它的升级版。Freeglut&#xff08;OpenGL Utility To…

H5开发指南|掌握核心技术,玩转私域营销利器

随着互联网技术的不断发展和用户需求的日益增长&#xff0c;H5页面逐渐成为了企业和个人展示信息、吸引用户关注的重要手段。具有跨平台兼容性强、网页链接分享、更新迭代方便快捷、低开发成本、可搜索和优化、数据分析与追踪、灵活性与扩展性以及无需下载安装等特点。不仅可以…

pico+Unity交互开发——触碰抓取

一、VR交互的类型 Hover&#xff08;悬停&#xff09; 定义&#xff1a;发起交互的对象停留在可交互对象的交互区域。例如&#xff0c;当手触摸到物品表面&#xff08;可交互区域&#xff09;时&#xff0c;视为触发了Hover。 Grab&#xff08;抓取&#xff09; 概念&#xff…